We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a reductive algebraic group over an algebraically closed field of positive characteristic, $G_{1}$ the Frobenius kernel of $G$, and $T$ a maximal torus of $G$. We show that the parabolically induced $G_{1}T$-Verma modules of singular highest weights are all rigid, determine their Loewy length, and describe their Loewy structure using the periodic Kazhdan–Lusztig $P$- and $Q$-polynomials. We assume that the characteristic of the field is sufficiently large that, in particular, Lusztig’s conjecture for the irreducible $G_{1}T$-characters holds.
We show that the modules for the Frobenius kernel of a reductive algebraic group over
an algebraically closed field of positive characteristic $p$ induced from the $p$-regular blocks of its parabolic subgroups can be $\mathbb{Z}$-graded. In particular, we obtain that the modules induced from the
simple modules of $p$-regular highest weights are rigid and determine their Loewy series,
assuming the Lusztig conjecture on the irreducible characters for the reductive
algebraic groups, which is now a theorem for large $p$. We say that a module is rigid if and only if it admits a unique
filtration of minimal length with each subquotient semisimple, in which case the
filtration is called the Loewy series.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.