We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Single-ended and balanced 90–120 GHz microstrip power amplifier MMICs have been designed for cost-sensitive 5G and 6G backhaul in a commercial 6-inch, 0.1-µm GaAs process. At 108 GHz, measured output power is 20.4 and 22.5 dBm, respectively. At 120 GHz, measured output is 12.6 and 17.4 dBm, respectively. This is the highest reported for GaAs, among the highest reported to date for microstrip MMIC amplifiers at these frequencies and competitive with more expensive InP and GaN processes. Measurement is compared with simulation.
We propose the techniques for automatic processing of measurement results in the context of golden (typical) device selection and noise figure measurement. These techniques are for golden (typical) device selection and noise figure measurement processing. Automation of measurement result processing and microwave element modeling speeds up a modeling routine and decreases the risk of possible errors. The techniques are validated through modeling of 0.15 μm GaAs pHEMTs with 4 × 40 μm and 4 × 75 μm total gate widths. Two test amplifiers were designed using the developed models. The amplifier modeling results agree well with measurements which confirms the validity of the proposed techniques. The proposed algorithm is potentially applicable to other circuit types (switches, digital, power amplifiers, mixers, oscillators, etc.) but may require different settings in those cases. However, in the presented work, we validated the algorithm for the linear and low-noise amplifiers only.
The composition of GaAs measured by laser-assisted atom probe tomography may be inaccurate depending on the experimental conditions. In this work, we assess the role of the DC field and the impinging laser energy on such compositional bias. The DC field is found to have a major influence, while the laser energy has a weaker one within the range of parameters explored. The atomic fraction of Ga may vary from 0.55 at low-field conditions to 0.35 at high field. These results have been interpreted in terms of preferential evaporation of Ga at high field. The deficit of As is most likely explained by the formation of neutral As complexes either by direct ejection from the tip surface or upon the dissociation of large clusters. The study of multiple detection events supports this interpretation.
The nanoindentation fracture behavior of gallium arsenide (GaAs) is examined from two perspectives in two parent papers. In the first paper (part I), we address the morphology of the crack field induced by different types of indenters by means of in situ nanoindentation inside a scanning electron microscope (SEM) and of cleavage cross-sectioning techniques. In the present paper (part II), we investigate the early stage of crack nucleation under wedge nanoindentation through cathodoluminescence and transmission electron microscopy. We find that the apex angle of the wedge indenter influences the dislocation microstructure and, as a consequence, the mechanism of crack nucleation under nanoindentation. The formation of microtwins depends on both the orientation of the indenter with respect to the orientation of the GaAs crystal and on the apex angle of the indenter. For dicing applications of GaAs wafers, it is desirable to have an opening angle of the indenter smaller than 70° to facilitate the formation of precursor cracks.
ZnSe-based heterostructures grown on GaAs substrates have been investigated for use in pin-diode LED applications. In this study, a conventional Bragg-Brentano diffractometer (BBD) has been used to screen samples for phase identification, crystallite size, presence of polycrystalline ZnSe, and initial rocking curve (RC) analysis. A limitation of the conventional diffractometer is that the smallest RC full width at half maximum (FWHM) that can be achieved is 500 to 600 arc sec. As deposition parameters are optimized and the RC limit of the conventional diffractometer is reached, analysis is moved to a four-bounce high-resolution diffractometer (HRD). Although more time for analysis is required, using the HRD has a RC resolution advantage, where RCs of <20 arc sec are obtained for neat GaAs wafers. Combining the BBD and HRD instruments for analysis of ZnSe films grown on GaAs substrates allows for an efficient means of high sample throughput combined with an accurate measurement of film alignment.
The secondary electron (SE) signal over a cleaved surface of GaAs p-i-n solar cells containing stacks of quantum wells (QWs) is analyzed by high-resolution scanning electron microscopy. The InGaAs QWs appear darker than the GaAsP barriers, which is attributed to the differences in electron affinity. This method is shown to be a powerful tool for profiling the conduction band minimum across junctions and interfaces with nanometer resolution. The intrinsic region is shown to be pinned to the Fermi level. Additional SE contrast mechanisms are discussed in relation to the dopant regions themselves as well as the AlGaAs window at the p-region. A novel method of in situ observation of the SE profile changes resulting from reverse biasing these structures shows that the built-in potential may be deduced. The obtained value of 0.7 eV is lower than the conventional bulk value due to surface effects.
The mean-free-paths for inelastic scattering of high-energy electrons (200 keV) for AlAs and GaAs have been determined based on a comparison of thicknesses as measured by electron holography and convergent-beam electron diffraction. The measured values are 77 ± 4 nm and 67 ± 4 nm for AlAs and GaAs, respectively. Using these values, the mean inner potentials of AlAs and GaAs were then determined, from a total of 15 separate experimental measurements, to be 12.1 ± 0.7 V and 14.0 ± 0.6 V, respectively. These latter measurements show good agreement with recent theoretical calculations within experimental error.
Au/Sn solder bumps are mainly used for flip chip assembly of compound semiconductors in optoelectronic and RF applications. They allow a fluxless assembly which is required to avoid contamination of optical interfaces and the metallurgy is well suited to the final gold metallization on GaAs or InP. Flip chip assembly experiments were carried out using two layer Au/Sn bumps as plated without prior bump reflow. An RF and reliability test vehicles comprise a GaAs chip which was flip chip soldered on a silicon substrate. Temperature cycling tests with and without underfiller were performed. The different failure modes for underfilled and nonunderfilled samples were discussed and compared. Additional reliability tests were performed with flip chip bonding by gold thermocompression for comparison. The test results and the failure modes are discussed in detail.
A focused ion beam (FIB) interface attached to a column of 200 keV
transmission electron microscope (TEM) was developed for in situ
micropatterning to semiconductors. TEM specimens of Si and GaAs, and those
of a thin Ni2Si layer on a Si substrate were micromilled in the
TEM during observation. A set of 6 x 6-um squares and alphabet letters
were patterned with a 25 keV Ga+-FIB of 0.2-μm beam diameter
at room temperature. The effect of FIB irradiation on the structural
evolution was observed simultaneously by a TV-rate video camera and
sequentially by regular film. FIB micropatterning to semiconductor
specimens caused amorphization and Ga injection. The excess Ga in the
specimens precipitated as metastable solid γ-phase for Si and as liquid
phase for GaAs. Ni2Si/Si specimens lost silicide crystallinity
after FIB patterning. Annealing of these bilayer specimens at 673K
resulted in the precipitation of Ni-rich silicide.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.