We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study reported the justification and selection of acceptable γ criteria with respect to low (6 MV) and high (15 MV) photon beams for intensity-modulated radiation therapy quality assurance (IMRT QA) using the Gafchromic external beam therapy 3 (EBT3) film.
Materials and methods
Five-field step-and-shoot IMRT was used to treat 16 brain IMRT patients using the dual-energy DHX-S linear accelerator (Varian Medical System, Palo Alto, CA, USA). Dose comparisons between computed values of the treatment planning system (TPS) and Gafchromic EBT3 film were evaluated based on γ analysis using the Film QA Pro software. The dose distribution was analysed with gamma area histograms (GAHs) generated using different γ criteria (3%/2 mm, 3%/3 mm and 5%/3 mm) for the 6 and 15 MV photon beams, to optimise the best distance-to-agreement (DTA) criteria with respect to the beam energy.
Results
From the comparison between the dose distributions acquired from the TPS and EBT3 film, a DTA criterion of 3%/2 mm showed less dose differences (DDs) with passing rates up to 93% for the 6 MV photon beams, while for the 15 MV a relaxed DTA criterion of 5%/3 mm was consistent with the DD acceptability criteria with a 95% passing rate.
Conclusions
Our results suggested that high-energy photon beams required relaxed DTA criteria for the brain IMRT QA, while low-energy photon beams showed better results even with tight DTA criteria.
The data used in brachytherapy planning are obtained from homogeneous mediums. In practice, the heterogeneous tissues and materials affect the dose distribution of brachytherapy. It is aimed to investigate the effect of air cavities on brachytherapy dose distribution using a specially designed device.
Material and methods
In this study, the special device designed with different volumes of air and water to be irradiated and measured at different depths using EBT3 Gafchromic films. EBT3 Gafchromic films were preferred for this study because they can be cut to the shape of the experimental geometry, are water resistance and double directional usability.
Results
In our study, sudden dose increases and decreases were observed at the water–air–water interfaces. Increases were 9, 11·8 and 15% in the 13, 18 and 22 mm apparatus, respectively. These effects were expected and the results were consistent with the literature and within the tolerance limits stated in the clinical dose guidelines. The most important result is that the percent depth–dose curve of the radiation passing through the air to the water and only passing through the water medium is different. The average differences were 1·97, 2·97 and 2·31% for the 13, 18 and 22 mm apparatus, respectively.
Conclusion
Although the effect of heterogeneity may be neglected according to clinical guidelines, it is suggested that the dose effect of heterogeneity is taken into account so that the dose can be estimated sensitively. Brachytherapy plans using dose data without considering air gaps may cause erroneous dose distributions due to heterogeneity of tissue.
The purpose of this study was to analyse the comparison of intensity-modulated radiation therapy quality assurance (IMRT QA) using Gafchromic® EBT3 film, Electronic portal imaging device (EPID) and MapCHECK®2.
Background
Pretreatment authentication is the main apprehension in advanced radiation therapy treatment plans such as IMRT.
Materials and methods
A total of 20 patients were planned on Eclipse treatment planning system using 6 and 15 MV separately.
Results
Gamma index of EBT3 film results shows the following average passing rates: 97% for 6 MV and 96·6% for 15 MV using criteria of ±5% of 3 mm, ±3% of 3 mm and ±3% of 2 mm for brain. However, by using ±5% of 3 mm and ±3% of 3 mm criteria, the average passing rates were 95·4% on 6 MV and 95·2% on 15 MV for prostate. For EPID, the results show the average passing rates as 97·8% for 6 MV and 97·2% for 15 MV in for brain. In cases in which ±5% of 3 mm and ±3% of 3 mm were used, the average passing rates were 96·6% for 6 MVand 96·1% for 15 MV for prostate. MapCHECK®2 results show average passing rates of 96·4% for 6 and 96·2% for 15 MV, respectively, for brain using criteria of ±5% of 3 mm, ±3% of 3 mm and ±3% of 2 mm, whereas for ±5% of 3 mm and ±3% of 3 mm the average rates are 95·2% for 6 and 94·7% for 15 MV in prostate.
Conclusions
The EPID results are better than the other methods, and hence EPID can be used effectively for IMRT pretreatment verifications.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.