We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A graph G is called an $[s,t]$-graph if any induced subgraph of G of order s has size at least $t.$ We prove that every $2$-connected $[4,2]$-graph of order at least $7$ is pancyclic. This strengthens existing results. There are $2$-connected $[4,2]$-graphs which do not satisfy the Chvátal–Erdős condition on Hamiltonicity. We also determine the triangle-free graphs among $[p+2,p]$-graphs for a general $p.$
For a finite group $G$, let $\unicode[STIX]{x1D6E5}(G)$ denote the character graph built on the set of degrees of the irreducible complex characters of $G$. In this paper, we obtain a necessary and sufficient condition which guarantees that the complement of the character graph $\unicode[STIX]{x1D6E5}(G)$ of a finite group $G$ is a nonbipartite Hamiltonian graph.
We give sufficient conditions for a graph to be traceable and Hamiltonian in terms of the Wiener index and the complement of the graph, which correct and extend the result of Yang [‘Wiener index and traceable graphs’, Bull. Aust. Math. Soc.88 (2013), 380–383]. We also present sufficient conditions for a bipartite graph to be traceable and Hamiltonian in terms of its Wiener index and quasicomplement. Finally, we give sufficient conditions for a graph or a bipartite graph to be traceable and Hamiltonian in terms of its distance spectral radius.
A set E of edges of a graph G is said to be a dominating set of edges if every edge of G either belongs to E or is adjacent to an edge of E. If the subgraph 〈E〉 induced by E is a trail T, then T is called a dominating trail of G. Dominating circuits are defined analogously. A sufficient condition is given for a graph to possess a spanning (and thus dominating) circuit and a sufficient condition is given for a graph to possess a spanning (and thus dominating) trail between each pair of distinct vertices. The line graph L(G) of a graph G is defined to be that graph whose vertex set can be put in one-to-one correspondence with the edge set of G in such a way that two vertices of L(G) are adjacent if and only if the corresponding edges of G are adjacent. The existence of dominating trails and circuits is employed to present results on line graphs and second iterated line graphs, respectively.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.