This study focuses on the co-operative salvo attack problem of multiple missiles against a stationary target under jointly connected switching topologies subject to time-varying communication delays. By carefully exploring certain features of the typical pure proportional navigation guidance law, a two-stage distributed guidance scheme is proposed without any information on time-to-go in this study to realise the simultaneous attack of multiple missiles. In the first guidance stage, a co-operative guidance law is proposed using local neighbouring communications only to achieve consensus on range-to-go and heading error to provide favourable initial conditions for the latter phase, in which switching topologies and time-varying communication delays are taken into account when obtaining sufficient conditions of consensus in terms of linear matrix inequalities. Then, missiles disconnect from each other and are guided individually by the typical pure proportional navigation guidance law with the same navigation gain to realise salvo attack in the second guidance phase. Finally, numerical simulations are carried out to clearly validate the theoretical results.