We study the existence of extremal periodic solutions for nonlinear evolution inclusions defined on an evolution triple of spaces and with the nonlinear operator establish A being time-dependent and pseudomonotone. Using techniques of multivalued analysis and a surjectivity result for L-generalized pseudomonotone operators, we prove the existence of extremal periodic solutions. Subsequently, by assuming that A(t, ·) is monotone, we prove a strong relaxation theorem for the periodic problem. Two examples of nonlinear distributed parameter systems illustrate the applicability of our results.