Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T20:37:53.617Z Has data issue: false hasContentIssue false

Extremal solutions and strong relaxation for nonlinear periodic evolution inclusions

Published online by Cambridge University Press:  20 January 2009

Nikolaos S. Papageorgiou
Affiliation:
National Technical University, Department of Mathematics, Zografou Campus, Athens 157 80, Greece (npapg@math.ntua.gr)
Nikolaos Yannakakis
Affiliation:
National Technical University, Department of Mathematics, Zografou Campus, Athens 157 80, Greece (npapg@math.ntua.gr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the existence of extremal periodic solutions for nonlinear evolution inclusions defined on an evolution triple of spaces and with the nonlinear operator establish A being time-dependent and pseudomonotone. Using techniques of multivalued analysis and a surjectivity result for L-generalized pseudomonotone operators, we prove the existence of extremal periodic solutions. Subsequently, by assuming that A(t, ·) is monotone, we prove a strong relaxation theorem for the periodic problem. Two examples of nonlinear distributed parameter systems illustrate the applicability of our results.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2000

References

1.Ahmed, N. U., An existence theorem for differential inclusions on Banach space, J. Appl. Math. Stoch. Analysis 5 (1992), 123130.CrossRefGoogle Scholar
2.Anichini, G. and Zecca, P., Multivalued differential equations and control problems, Houston J. Math. 10 (1984), 307313.Google Scholar
3.Becker, R., Periodic solution of semilinear equations of evolution of compact type, J. Math. Analysis Appl. 82 (1981), 3348.CrossRefGoogle Scholar
4.Browder, F., Existence of periodic solutions for nonlinear equations of evolutions, Proc. Natn. Acad. Sci. USA 53 (1965), 11101113.CrossRefGoogle Scholar
5.Ding, Z. and Kartsatos, A., Nonresonance problems for differential evolution equations in Banach spaces, Proc. Am. Math. Soc. 124 (1996), 23572365.CrossRefGoogle Scholar
6.Hirano, N., Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. Am. Math. Soc. 120 (1994), 185192.CrossRefGoogle Scholar
7.Hu, S. and Papageorgiou, N. S., Handbook of multivalued analysis, vol. 1: Theory (Kluwer, Dordrecht, 1997).CrossRefGoogle Scholar
8.Hu, S. and Papageorgiou, N. S., On the existence of periodic solutions for a class of nonlinear evolution inclusions, Bolletino UMI 7-B (1993), 591605.Google Scholar
9.Hu, S. and Papageorgiou, N. S., On the existence of periodic solution for nonconvex valued differential inclusions in ℝN, Proc. Am. Math. Soc. 123 (1995), 30433050.Google Scholar
10.Hu, S., Kandilakis, D. and Papageorgiou, N. S., Periodic solutions for nonconvex differential inclusions, Proc. Am. Math. Soc. 127 (1999), 8994.CrossRefGoogle Scholar
11.Lions, J.-L., Quelques methodes de resolution des problemes aux limites nonlineaires (Dunod, Paris, 1969).Google Scholar
12.Migorski, S., On an existence result for nonlinear evolution inclusions, Proc. Edinb. Math. Soc. 39 (1996), 133141.CrossRefGoogle Scholar
13.Papageorgiou, N. S., On the set of solutions of a class of nonlinear evolution inclusions, Kodai Math. J. 15 (1992), 387402.CrossRefGoogle Scholar
14.Papageorgiou, N. S., A continuous version of the relaxation theorem for nonlinear evolution inclusions, Houston J. Math. 20 (1994), 685704.Google Scholar
15.Papageorgiou, N. S., Boundary value problems and periodic solutions for semilinear evolution inclusions, Commun. Math. Univ. Carol. 35 (1994), 325326.Google Scholar
16.Papageorgiou, N. S., On the existence of solutions for nonlinear parabolic problems with nonmonotone discontinuities, J. Math. Analysis Appl. 205 (1997), 434453.CrossRefGoogle Scholar
17.Papageorgiou, N. S., Papalini, F. and Renzacci, F., Existence of solutions and periodic solutions for nonlinear evolution inclusions, Rend. Circolo Mat. Palermo 48 (1999), 341364.CrossRefGoogle Scholar
18.Papageorgiou, N. S. and Shahzad, N., Properties of the solution set of nonlinear evolution inclusions, Appl Math. Optim. 36 (1997), 120.CrossRefGoogle Scholar
19.Pruss, J., Periodic solutions of semilinear evolution equations, Nonlinear Analysis 3 (1979), 601612.CrossRefGoogle Scholar
20.Temam, R., Navier-Stokes equations: theory and numerical analysis, 3rd edn (North Holland, Amsterdam, 1984).Google Scholar
21.Vrabie, J., Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Am. Math. Soc. 109 (1990), 653661.CrossRefGoogle Scholar
22.Zeidler, E., Nonlinear functional analysis and its applications, vol. II (Springer, New York, 1990).Google Scholar