We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For classical Lie superalgebras of type I, we provide necessary and sufficient conditions for a Verma supermodule
$\Delta (\lambda )$
to be such that every nonzero homomorphism from another Verma supermodule to
$\Delta (\lambda )$
is injective. This is applied to describe the socle of the cokernel of an inclusion of Verma supermodules over the periplectic Lie superalgebras
$\mathfrak {pe} (n)$
and, furthermore, to reduce the problem of description of
$\mathrm {Ext}^1_{\mathcal O}(L(\mu ),\Delta (\lambda ))$
for
$\mathfrak {pe} (n)$
to the similar problem for the Lie algebra
$\mathfrak {gl}(n)$
. Additionally, we study the projective and injective dimensions of structural supermodules in parabolic category
$\mathcal O^{\mathfrak {p}}$
for classical Lie superalgebras. In particular, we completely determine these dimensions for structural supermodules over the periplectic Lie superalgebra
$\mathfrak {pe} (n)$
and the orthosymplectic Lie superalgebra
$\mathfrak {osp}(2|2n)$
.
We introduce the oriented Brauer–Clifford and degenerate affine oriented Brauer–Clifford supercategories. These are diagrammatically defined monoidal supercategories that provide combinatorial models for certain natural monoidal supercategories of supermodules and endosuperfunctors, respectively, for the Lie superalgebras of type Q. Our main results are basis theorems for these diagram supercategories. We also discuss connections and applications to the representation theory of the Lie superalgebra of type Q.
An equivariant map queer Lie superalgebra is the Lie superalgebra of regular maps from an algebraic variety (or scheme) $X$ to a queer Lie superalgebra $\mathfrak{q}$ that are equivariant with respect to the action of a finite group $\Gamma $ acting on $X$ and $\mathfrak{q}$. In this paper, we classify all irreducible finite-dimensional representations of the equivariant map queer Lie superalgebras under the assumption that $\Gamma $ is abelian and acts freely on $X$. We show that such representations are parameterized by a certain set of $\Gamma $-equivariant finitely supported maps from $X$ to the set of isomorphism classes of irreducible finite-dimensional representations of $\mathfrak{q}$. In the special case where $X$ is the torus, we obtain a classification of the irreducible finite-dimensional representations of the twisted loop queer superalgebra.
We will present an investigation of (ε, δ)-Freudenthal–Kantor supertriple systems that are intimately related to Lie supertriple systems and Lie superalgebras. We can also introduce a super analogue of Nijenhuis tensor and almost-complex structure in differential geometry.
We study a dual pair of general linear Lie superalgebras in the sense of R. Howe. We give an explicit multiplicity-free decomposition of a symmetric and skew-symmetric algebra (in the super sense) under the action of the dual pair and present explicit formulas for the highest-weight vectors in each isotypic subspace of the symmetric algebra. We give an explicit multiplicity-free decomposition into irreducible gl(m|n)-modules of the symmetric and skew-symmetric algebras of the symmetric square of the natural representation of gl(m|n). In the former case, we also find explicit formulas for the highest-weight vectors. Our work unifies and generalizes the classical results in symmetric and skew-symmetric models and admits several applications.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.