Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:22:57.439Z Has data issue: false hasContentIssue false

SOME HOMOLOGICAL PROPERTIES OF CATEGORY $\boldsymbol {\mathcal {O}}$ FOR LIE SUPERALGEBRAS

Published online by Cambridge University Press:  21 January 2022

CHIH-WHI CHEN*
Affiliation:
Department of Mathematics, National Central University, Zhongli District, Taoyuan City, Taiwan
VOLODYMYR MAZORCHUK
Affiliation:
Department of Mathematics, Uppsala University, Box 480, SE-75106 Uppsala, Sweden e-mail: mazor@math.uu.se

Abstract

For classical Lie superalgebras of type I, we provide necessary and sufficient conditions for a Verma supermodule $\Delta (\lambda )$ to be such that every nonzero homomorphism from another Verma supermodule to $\Delta (\lambda )$ is injective. This is applied to describe the socle of the cokernel of an inclusion of Verma supermodules over the periplectic Lie superalgebras $\mathfrak {pe} (n)$ and, furthermore, to reduce the problem of description of $\mathrm {Ext}^1_{\mathcal O}(L(\mu ),\Delta (\lambda ))$ for $\mathfrak {pe} (n)$ to the similar problem for the Lie algebra $\mathfrak {gl}(n)$ . Additionally, we study the projective and injective dimensions of structural supermodules in parabolic category $\mathcal O^{\mathfrak {p}}$ for classical Lie superalgebras. In particular, we completely determine these dimensions for structural supermodules over the periplectic Lie superalgebra $\mathfrak {pe} (n)$ and the orthosymplectic Lie superalgebra $\mathfrak {osp}(2|2n)$ .

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Communicated by Anthony Henderson

The first author is partially supported by MoST grant 108-2115-M-008-018-MY2. For the second author, the research was partially supported by the Swedish Research Council and Göran Gustafssons Stiftelse.

References

Andersen, H. and Mazorchuk, V., ‘Category $\mathbf{\mathcal{O}}$ for quantum groups’, J. Eur. Math. Soc. (JEMS) 17(2) (2015), 405431.CrossRefGoogle Scholar
Bell, A. and Farnsteiner, R., ‘On the theory of Frobenius extensions and its application to Lie superalgebras’, Trans. Amer. Math. Soc. 335 (1993), 407424.CrossRefGoogle Scholar
Bernstein, I., Gelfand, I. and Gelfand, S., Differential operators on the base affine space and a study of $g$ -modules’, in: Lie Groups and Their Representations (Proceedings of the Summer School, János Bolyai Mathematical Society, Budapest, 1971) (ed. Gelfand, I. M.) (Halsted, New York, 1975), 2164.Google Scholar
Bernstein, I., Gelfand, I. and Gelfand, S., ‘A certain category of $g$ -modules’, Funkcional. Anal. i Priložen. 10(2) (1976), 18.Google Scholar
Chen, C.-W., Cheng, S.-J. and Coulembier, K., ‘Tilting modules for classical Lie superalgebras’, J. Lond. Math. Soc. (2) 103 (2021), 870900.CrossRefGoogle Scholar
Chen, C.-W., Coulembier, K. and Mazorchuk, V., ‘Translated simple modules for Lie algebras and simple supermodules for Lie superalgebras’, Math. Z. (2021) 297, 255281.CrossRefGoogle Scholar
Chen, C.-W. and Coulembier, K., ‘The primitive spectrum and category $\mathbf{\mathcal{O}}$ for the periplectic Lie superalgebra’, Canad. J. Math. 72(3) (2020), 625655.CrossRefGoogle Scholar
Chen, C.-W. and Mazorchuk, V., ‘Simple supermodules over Lie superalgebras’, Trans. Amer. Math. Soc. 374 (2021), 899921.CrossRefGoogle Scholar
Cheng, S.-J., Mazorchuk, V. and Wang, W., ‘Equivalence of blocks for the general linear Lie superalgebra’, Lett. Math. Phys. 103 (2013), 13131327.CrossRefGoogle Scholar
Coulembier, K., ‘Gorenstein homological algebra for rngs and Lie superalgebras’, Preprint, 2017, arXiv:1707.05040.Google Scholar
Coulembier, K. and Mazorchuk, V., ‘Some homological properties of category $\mathbf{\mathcal{O}}$ . III’, Adv. Math. 283 (2015), 204231.CrossRefGoogle Scholar
Coulembier, K. and Mazorchuk, V., ‘Some homological properties of category $\mathbf{\mathcal{O}}$ . IV’, Forum Math. 29(5) (2017), 10831124.CrossRefGoogle Scholar
Chen, C.-W. and Peng, Y.-N., ‘Parabolic category ${\mathbf{\mathcal{O}}}^p$ for periplectic Lie superalgebras $pe(n)$ ’, Preprint, 2020, arXiv:2002.10311.Google Scholar
Coulembier, K. and Serganova, V., ‘Homological invariants in category $\mathbf{\mathcal{O}}$ for the general linear superalgebra’, Trans. Amer. Math. Soc. 369 (2017), 79617997.CrossRefGoogle Scholar
Cheng, S.-J. and Wang, W., Dualities and Representations of Lie Superalgebras, Graduate Studies in Mathematics, 144 (American Mathematical Society, Providence, RI, 2012).CrossRefGoogle Scholar
Cheng, S.-J. and Wang, W., Character formulae in category $\mathbf{\mathcal{O}}$ for exceptional Lie superalgebras $D\left(2|1;\zeta \right)$ ’, Transform. Groups 24(3) (2019), 781821.CrossRefGoogle Scholar
Dixmier, J., Enveloping Algebras, Graduate Studies in Mathematics, 11 (American Mathematical Society, Providence, RI, 1996).Google Scholar
Duflo, M. and Serganova, V., ‘On associated variety for Lie superalgebras’, Preprint, 2005, arXiv:2002.10311.Google Scholar
Gorelik, M., ‘On the ghost centre of Lie superalgebras’, Ann. Inst. Fourier (Grenoble) 50(6) (2000), 17451764.CrossRefGoogle Scholar
Gorelik, M., ‘Strongly typical representations of the basic classical Lie superalgebras’, J. Amer. Math. Soc. 15(1) (2002), 167184.CrossRefGoogle Scholar
Gorelik, M., ‘Annihilation theorem and separation theorem for basic classical Lie superalgebras,’ J. Amer. Math. Soc. 15(1) (2002), 113165.CrossRefGoogle Scholar
Humphreys, J., Representations of Semisimple Lie Algebras in the BGG Category  $\mathbf{\mathcal{O}}$ , Graduate Studies in Mathematics, 94 (American Mathematical Society, Providence, RI, 2008).Google Scholar
Kac, V., ‘Lie superalgebras’, Adv. Math. 26(1) (1977), 896.CrossRefGoogle Scholar
Kac, V., ‘Representations of classical Lie superalgebras’, in: Differential Geometrical Methods in Mathematical Physics, II (Proceedings of the Conference on University of Bonn, Bonn, 1977) (eds. Bleuler, K., Petry, H. R. and Reetz, A.) Lecture Notes in Mathematics, 676 (Springer, Berlin–Heidelberg, 1978), 597626.CrossRefGoogle Scholar
Ko, H., Mazorchuk, V. and Mrđen, R., ‘Some homological properties of category $\mathbf{\mathcal{O}}$ , V’, Int. Math. Res. Not. IMRN, to appear. Published online (11 December 2021).CrossRefGoogle Scholar
Ko, H., Mazorchuk, V. and Mrđen, R., ‘Bigrassmannian permutations and Verma modules’, Selecta Math. (N.S.) 27 (2021), 55.CrossRefGoogle Scholar
Kumar, S., Kac–Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics, 204 (Springer Science Business Media, New York, 2012).Google Scholar
Liu, J., Luo, L. and Wang, W., Odd singular vector formula for general linear Lie superalgebras,’ Bull. Inst. Math. Acad. Sin. (N.S.) 14(4) (2019), 389402.Google Scholar
Mazorchuk, V., ‘Some homological properties of the category $\mathbf{\mathcal{O}}$ ’, Pacific J. Math. 232(2) (2007), 313341.CrossRefGoogle Scholar
Mazorchuk, V., ‘Some homological properties of the category $\mathbf{\mathcal{O}}$ , II’, Represent. Theory 14 (2010), 249263.CrossRefGoogle Scholar
Mazorchuk, V., ‘Parabolic category $\mathbf{\mathcal{O}}$ for classical Lie superalgebras’, in: Advances in Lie Superalgebras (eds. Gorelik, M. and Papi, P.) (Springer International Publishing, New York, 2014), 149166.CrossRefGoogle Scholar
Musson, I., Lie Superalgebras and Enveloping Algebras, Graduate Studies in Mathematics, 131 (American Mathematical Society, Providence, RI, 2012).CrossRefGoogle Scholar
Penkov, I. and Serganova, V., ‘Cohomology of $G/P$ for classical complex Lie supergroups $G$ and characters of some atypical $G$ -modules’, Ann. Inst. Fourier (Grenoble) 39 (1989), 845873.CrossRefGoogle Scholar
Rocha-Caridi, A., ‘Splitting criteria for $g$ -modules induced from a parabolic and the Berňste\v\i n–Gel’fand–Gel’fand resolution of a finite-dimensional, irreducible $g$ -module’, Trans. Amer. Math. Soc. 262(2) (1980), 335366.Google Scholar
Serganova, V., ‘On representations of the Lie superalgebra $p(n)$ ’, J. Algebra 258(2) (2002), 615630.CrossRefGoogle Scholar
Soergel, W., ‘Kategorie $\mathbf{\mathcal{O}}$ , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe’, J. Amer. Math. Soc. 3(2) (1990), 421445.Google Scholar
Zuckerman, G., ‘Generalized Harish-Chandra modules’, in: Highlights in Lie Algebraic Methods, Progress in Mathematics, 295 (eds. Joseph, A., Melnikov, A. and Penkov, I.) (Springer Nature, New York, 2012), 123143.CrossRefGoogle Scholar