We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let ${\mathcal {R}} \subset \mathbb {P}^1_{\mathbb {C}}$ be a finite subset of markings. Let G be an almost simple simply-connected algebraic group over $\mathbb {C}$. Let $K_G$ denote the compact real form of G. Suppose for each lasso l around the marked point, a conjugacy class $C_l$ in $K_G$ is prescribed. The aim of this paper is to give verifiable criteria for the existence of an irreducible homomorphism of $\pi _{1}(\mathbb P^1_{\mathbb {C}} \,{\backslash}\, {\mathcal {R}})$ into $K_G$ such that the image of l lies in $C_l$.
In 1988, E. Verlinde gave a remarkable conjectural formula for the dimension of conformal blocks over a smooth curve in terms of representations of affine Lie algebras. Verlinde's formula arose from physical considerations, but it attracted further attention from mathematicians when it was realized that the space of conformal blocks admits an interpretation as the space of generalized theta functions. A proof followed through the work of many mathematicians in the 1990s. This book gives an authoritative treatment of all aspects of this theory. It presents a complete proof of the Verlinde formula and full details of the connection with generalized theta functions, including the construction of the relevant moduli spaces and stacks of G-bundles. Featuring numerous exercises of varying difficulty, guides to the wider literature and short appendices on essential concepts, it will be of interest to senior graduate students and researchers in geometry, representation theory and theoretical physics.
Using the theory of cohomological invariants for algebraic stacks, we compute the Brauer group of the moduli stack of hyperelliptic curves ${\mathcal {H}}_g$ over any field of characteristic $0$. In positive characteristic, we compute the part of the Brauer group whose order is prime to the characteristic of the base field.
We prove a decomposition formula of logarithmic Gromov–Witten invariants in a degeneration setting. A one-parameter log smooth family $X \longrightarrow B$ with singular fibre over $b_0\in B$ yields a family $\mathscr {M}(X/B,\beta ) \longrightarrow B$ of moduli stacks of stable logarithmic maps. We give a virtual decomposition of the fibre of this family over $b_0$ in terms of rigid tropical maps to the tropicalization of $X/B$. This generalizes one aspect of known results in the case that the fibre $X_{b_0}$ is a normal crossings union of two divisors. We exhibit our formulas in explicit examples.
We find upper bounds on the essential dimension of the moduli stack of parabolic vector bundles over a curve. When there is no parabolic structure, we improve the known upper bound on the essential dimension of the usual moduli stack. Our calculations also give lower bounds on the essential dimension of the semistable locus inside the moduli stack of vector bundles of rank r and degree d without parabolic structure.
The theory of generalized elliptic curves gives a moduli-theoretic compactification for modular curves when the level is a unit on the base, and the theory of Drinfeld structures on elliptic curves provides moduli schemes over the integers without a modular interpretation of the cusps. To unify these viewpoints it is natural to consider Drinfeld structures on generalized elliptic curves, but some of these resulting moduli problems have non-étale automorphism groups and so cannot be Deligne–Mumford stacks. Artin’s method as used in the work of Deligne and Rapoport rests on a technique of passage to irreducible fibers (where the geometry determines the group theory), and this does not work in the presence of non-étale level structures and non-étale automorphism groups. By making more efficient use of the group theory to bypass these difficulties, we prove that the standard moduli problems for Drinfeld structures on generalized elliptic curves are proper Artin stacks. We also analyze the local structure on these stacks and give some applications to Hecke correspondences.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.