We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For the $p$-localized sphere $\mathbb {S}^{2m-1}_{(p)}$ with $p >3$ a prime, we prove that the homotopy nilpotency satisfies $\mbox {nil}\ \mathbb {S}^{2m-1}_{(p)}<\infty$, with respect to any homotopy associative $H$-structure on $\mathbb {S}^{2m-1}_{(p)}$. We also prove that $\mbox {nil}\ \mathbb {S}^{2m-1}_{(p)}= 1$ for all but a finite number of primes $p >3$. Then, for the loop space of the associated $\mathbb {S}^{2m-1}_{(p)}$-projective space $\mathbb {S}^{2m-1}_{(p)}P(n-1)$, with $m,n\ge 2$ and $m\mid p-1$, we derive that $\mbox {nil}\ \Omega (\mathbb {S}^{2m-1}_{(p)}P (n-1))\le 3$.
B. Schuster [19] proved that the mod 2 Morava K-theory K(s)*(BG) is evenly generated for all groups G of order 32. For the four groups G of order 32 with the numbers 38, 39, 40 and 41 in the Hall-Senior list [11], the ring K(2)*(BG) has been shown to be generated as a K(2)*-module by transferred Euler classes. In this paper, we show this for arbitrary s and compute the ring structure of K(s)*(BG). Namely, we show that K(s)*(BG) is the quotient of a polynomial ring in 6 variables over K(s)*(pt) by an ideal for which we list explicit generators.
We show that there is an essentially unique S-algebra structure on the Morava K-theory spectrum K(n), while K(n) has uncountably many MU or -algebra structures. Here is the K(n)-localized Johnson–Wilson spectrum. To prove this we set up a spectral sequence computing the homotopy groups of the moduli space of A∞ structures on a spectrum, and use the theory of S-algebra k-invariants for connectiveS-algebras found in the work of Dugger and Shipley [Postnikov extensions of ring spectra, Algebr. Geom. Topol. 6 (2006), 1785–1829 (electronic)] to show that all the uniqueness obstructions are hit by differentials.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.