Stylistic composition is a creative musical activity, in which students as well as renowned composers write according to the style of another composer or period. We describe and evaluate two computational models of stylistic composition, called Racchman-Oct2010 (random constrained chain of Markovian nodes, October 2010) and Racchmaninof-Oct2010 (Racchman with inheritance of form). The former is a constrained Markov model, and the latter embeds this model in an analogy-based design system. Racchmaninof-Oct2010 applies a pattern discovery algorithm called SIACT and a perceptually validated formula for rating pattern importance, to guide the generation of a new target design from an existing source design. A listening study is reported concerning human judgments of music excerpts that are, to varying degrees, in the style of mazurkas by Frédéric Chopin (1810–1849). The listening study acts as an evaluation of the two computational models and a third, benchmark system, called Experiments in Musical Intelligence. Judges' responses indicate that some aspects of musical style, such as phrasing and rhythm, are being modeled effectively by our algorithms. Judgments are also used to identify areas for future improvements. We discuss the broader implications of this work for the fields of engineering and design, where there is potential to make use of our models of hierarchical repetitive structure.