We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the setting of finite groups, suppose $J$ acts on $N$ via automorphisms so that the induced semidirect product $N\rtimes J$ acts on some non-empty set $\Omega$, with $N$ acting transitively. Glauberman proved that if the orders of $J$ and $N$ are coprime, then $J$ fixes a point in $\Omega$. We consider the non-coprime case and show that if $N$ is abelian and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$. We also show that if $N$ is nilpotent, $N\rtimes J$ is supersoluble, and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$.
We demonstrate that two supersoluble complements of an abelian base in a finite split extension are conjugate if and only if, for each prime $p$, a Sylow $p$-subgroup of one complement is conjugate to a Sylow $p$-subgroup of the other. As a corollary, we find that any two supersoluble complements of an abelian subgroup $N$ in a finite split extension $G$ are conjugate if and only if, for each prime $p$, there exists a Sylow $p$-subgroup $S$ of $G$ such that any two complements of $S\cap N$ in $S$ are conjugate in $G$. In particular, restricting to supersoluble groups allows us to ease D. G. Higman's stipulation that the complements of $S\cap N$ in $S$ be conjugate within $S$. We then consider group actions and obtain a fixed point result for non-coprime actions analogous to Glauberman's lemma.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.