We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Novikov conjecture arises as a piece of the Borel conjecture, although generalized beyond the setting of aspherical manifolds. This chapted gives several methods, from spltting theorems to index theory to bounded topology, for verifying this conjecture.
We construct a Baum–Connes assembly map localised at the unit element of a discrete group $\Gamma$. This morphism, called $\mu _\tau$, is defined in $KK$-theory with coefficients in $\mathbb {R}$ by means of the action of the idempotent $[\tau ]\in KK_{\mathbin {{\mathbb {R}}}}^\Gamma (\mathbb {C},\mathbb {C})$ canonically associated to the group trace of $\Gamma$. We show that the corresponding $\tau$-Baum–Connes conjecture is weaker than the classical version, but still implies the strong Novikov conjecture. The right-hand side of $\mu _\tau$ is functorial with respect to the group $\Gamma$.
Applications of assembly maps to the Kadison-Kaplansky conjecture on the existence of idempotents in group algebras, to the existence and study of positive scalar curvature metrics, and to the Novikov conjecture in manifold topology.Historical motivation and some overview of the literature.
We formulate and study a new coarse (co-)assembly map. It involves a modification of the Higson corona construction and produces a map dual in an appropriate sense to the standard coarse assembly map. The new assembly map is shown to be an isomorphism in many cases. For the underlying metric space of a group, the coarse co-assembly map is closely related to the existence of a dual Dirac morphism and thus to the Dirac dual Dirac method of attacking the Novikov conjecture.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.