This paper develops a method of optimal scaling for multivariate ordinal data, in the framework of a generalized principal component analysis. This method yields a multidimensional configuration of items, a unidimensional scale of category weights for each item and, optionally, a multidimensional configuration of subjects. The computation is performed by alternately solving an eigenvalue problem and executing a quasi-Newton projection method. The algorithm is extended for analysis of data with mixed measurement levels or for analysis with a combined weighting of items. Numerical examples and simulations are provided. The algorithm is discussed and compared with some related methods.