Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T00:48:33.854Z Has data issue: false hasContentIssue false

The Problem of Local Optimality with OSMOD

Published online by Cambridge University Press:  01 January 2025

Tatsuo Otsu*
Affiliation:
Department of Behavioral Science Hokkaido University
Takayuki Saito
Affiliation:
Department of Behavioral Science Hokkaido University
*
Requests for reprints should be sent to Tatsuo Otsu, Department of Behavioral Science, Bungakubu, Hokkaido University, Kita 10 Nishi 7, Kita-ku, Sapporo, 060, JAPAN.

Abstract

The possibility of obtaining locally optimal solutions with categorical data is pointed out for the original version of OSMOD development by Saito and Otsu. A revision of the initialization strategy in OSMOD is suggested, and its effectiveness in diminishing this possibility is demonstrated.

Type
Original Paper
Copyright
Copyright © 1990 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kuhfeld, W. F., Sarle, W. S., & Young, F. W. (1985). Methods of generating model estimates in the PRINQUAL macro. SAS users group international conference proceedings: SUGI (pp. 962971). Cary, NC: SAS Institute.Google Scholar
Kuhfeld, W. F., & Young, F. W. (1989). PRINCIPALS versus OSMOD: A comment on Saito and Otsu. Psychometrika, 54, 755756.CrossRefGoogle Scholar
Saito, T., & Otsu, T. (1983). A method of optimal scaling for multivariate ordinal data. Hokkaido Behavioral Science Report, Series M, 5.Google Scholar
Saito, T., & Otsu, T. (1988). A method of optimal scaling for multivariate ordinal data and its extensions. Psychometrika, 53, 525.CrossRefGoogle Scholar
Tenenhaus, M., & Vachette, J. L. (1977). PRINQUAL: Un programme d'Analyse en composantes principales d'un ensemble de variables nominales ou numeriques [PRINQUAL: A program for principal component analysis with nominal or numeric variables], Jouy-en-Josas: CESA.Google Scholar