Oligonol was orally administered at 10 or 20 mg/kg body weight per d for 8 weeks to db/db mice with type 2 diabetes, and its effects were compared with those of the vehicle in db/db and m/m (misty, non-diabetic) mice. Serum and renal biochemical factors, protein expressions related to lipid metabolism and inflammation, and advanced glycation endproducts were measured. There were significant reductions in the serum lipid concentration, reactive oxygen species (ROS) and lipid peroxidation, as well as improvements in renal function parameters. In addition, oligonol treatment significantly decreased ROS levels and lipid peroxidation in the kidney. In particular, the renal lipid contents such as TAG and total cholesterol were significantly reduced in the oligonol-administered groups through the up-regulation of PPARα and down-regulation of sterol regulatory element-binding protein-1 in db/db mice. Moreover, oligonol inhibited non-fluorescent AGE formation and their receptor expression, suggesting that it could effectively inhibit AGE development caused by oxidative stress and/or dyslipidaemia in the kidney of db/db mice. Furthermore, augmented expressions of NF-κBp65, cyclo-oxygenase-2 and inducible NO synthase were down-regulated to the levels of m/m mice in the group given oligonol at 20 mg/kg. This means that oligonol would act as a regulator in the inflammatory response of type 2 diabetes. The present results suggest that oligonol could have renoprotective effects against abnormal lipid metabolism and ROS-related AGE formation in type 2 diabetes.