We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that every orbispace satisfying certain mild hypotheses has ‘enough’ vector bundles. It follows that the $K$-theory of finite rank vector bundles on such orbispaces is a cohomology theory. Global presentation results for smooth orbifolds and derived smooth orbifolds also follow.
For X a smooth projective variety and $D=D_1+\dotsb +D_n$ a simple normal crossing divisor, we establish a precise cycle-level correspondence between the genus $0$ local Gromov–Witten theory of the bundle $\oplus _{i=1}^n \mathcal {O}_X(-D_i)$ and the maximal contact Gromov–Witten theory of the multiroot stack $X_{D,\vec r}$. The proof is an implementation of the rank-reduction strategy. We use this point of view to clarify the relationship between logarithmic and orbifold invariants.
We construct a family of fibred threefolds $X_m \to (S , \Delta )$ such that $X_m$ has no étale cover that dominates a variety of general type but it dominates the orbifold $(S,\Delta )$ of general type. Following Campana, the threefolds $X_m$ are called weakly special but not special. The Weak Specialness Conjecture predicts that a weakly special variety defined over a number field has a potentially dense set of rational points. We prove that if m is big enough, the threefolds $X_m$ present behaviours that contradict the function field and analytic analogue of the Weak Specialness Conjecture. We prove our results by adapting the recent method of Ru and Vojta. We also formulate some generalisations of known conjectures on exceptional loci that fit into Campana’s program and prove some cases over function fields.
We prove a Givental-style mirror theorem for toric Deligne–Mumford stacks ${\mathcal{X}}$. This determines the genus-zero Gromov–Witten invariants of ${\mathcal{X}}$ in terms of an explicit hypergeometric function, called the $I$-function, that takes values in the Chen–Ruan orbifold cohomology of ${\mathcal{X}}$.
We show that the bicategory of (representable) orbifolds and good maps is equivalent to the bicategory of orbifold translation groupoids and generalized equivariant maps, giving a mechanism for transferring results from equivariant homotopy theory to the orbifold category. As an application, we use this result to define orbifold versions of a couple of equivariant cohomology theories: $K$-theory and Bredon cohomology for certain coefficient diagrams.
We study residues on a complete toric variety $X$, which are defined in terms of the homogeneous coordinate ring of $X$. We first prove a global transformation law for toric residues. When the fan of the toric variety has a simplicial cone of maximal dimension, we can produce an element with toric residue equal to 1. We also show that in certain situations, the toric residue is an isomorphism on an appropriate graded piece of the quotient ring. When $X$ is simplicial, we prove that the toric residue is a sum of local residues. In the case of equal degrees, we also show how to represent $X$ as a quotient $(Y\setminus\{0\})/C\ast$ such that the toric residue becomes the local residue at 0 in $Y$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.