The template-based approach has been employed for the synthesis of nanomaterials with the potential application in the development of new material, energy and microelectronic devices. The templates are carbon nanotubes, to which the external contour is applied. Both plasmaenhanced chemical vapour deposition (PECVD) and atomic layer deposition (ALD) processes have been studied for various materials, including SiO2 and Al2O3. It is found that PECVD processes can give conformal coating on the template of carbon nanotubes, and the plasmaenhanced ALD (PEALD) processes do not show obvious damage to the morphology of carbon nanotubes. Pretreatment is also not necessary for the formation of conformal coatings of SiO2 and Al2O3. Moreover, the carbon nanotubes can be treated as the sacrificial template and removed to prepare the nanostructures with original contour. As an example, the 3-dimensional structure of Al2O3 has been demonstrated. This can be explored to develop 2D and 3D nanostructures of the intended materials. The approach of using PECVD and ALD processes makes it possible to integrate in a continuous way such kind of synthesis process with production processes of current semiconductor and energy industries.