Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T22:15:23.024Z Has data issue: false hasContentIssue false

The effect of radio frequency power on the structural and optical properties of a-C:H films prepared by PECVD

Published online by Cambridge University Press:  16 January 2017

Yequan Xiao
Affiliation:
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials (CTGU), China Three Gorges University, Yichang 443002, China; and School of Materials Science and Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
Xinyu Tan*
Affiliation:
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials (CTGU), China Three Gorges University, Yichang 443002, China
Lihua Jiang*
Affiliation:
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials (CTGU), China Three Gorges University, Yichang 443002, China
Ting Xiao
Affiliation:
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials (CTGU), China Three Gorges University, Yichang 443002, China
Peng Xiang
Affiliation:
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials (CTGU), China Three Gorges University, Yichang 443002, China
Wensheng Yan
Affiliation:
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, Karlsruhe 76344, Germany
*
a) Address all correspondence to these authors. e-mail: husttanxin@tsinghua.edu.cn
b) e-mail: jlihua107@163.com
Get access

Abstract

Hydrogenated amorphous carbon (a-C:H) films with a designed buffer layer of amorphous hydrogenated silicon carbide on the substrates were fabricated by plasma enhanced chemical vapor deposition (PECVD). The effect of radio frequency (RF) power on the structural and optical properties of a-C:H films was investigated. The ratios of sp 3 to sp 2 of carbon atoms and hydrogen contents in the RF power range of 75–175 W are determined and a similar trend as a function of power. The increase of sp 3 to sp 2 ratio leads to the increase of transmittance and optical gap of a-C:H films. a-C:H film under an RF power of 175 W possesses high transmissive ability (>80%) in the visible wave length, even the highest transmittance value of about 94.2% is achieved at the wave length 550 nm. These results show the optimal a-C:H films which are promising for the applications in the area of solar cells acting a window layer and antireflection layer.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Mauricio Terrones

References

REFERENCES

Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng., R 37(4), 129 (2002).Google Scholar
Chuang, F., Sun, C., Cheng, H., Huang, C., and Lin, I.: Enhancement of electron emission efficiency of Mo tips by diamond like carbon coatings. Appl. Phys. Lett. 68(12), 1666 (1996).Google Scholar
Aroutiounian, V., Martirosyan, K., and Soukiassian, P.: Low reflectance of diamond-like carbon/porous silicon double layer antireflection coating for silicon solar cells. J. Phys. D: Appl. Phys. 37(19), L25 (2004).Google Scholar
Pearce, G., Marks, N., McKenzie, D., and Bilek, M.: Molecular dynamics simulation of the thermal spike in amorphous carbon thin films. Diamond Relat. Mater. 14(3), 921 (2005).Google Scholar
Robertson, J.: Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383(1), 81 (2001).Google Scholar
Goglia, P.R., Berkowitz, J., Hoehn, J., Xidis, A., and Stover, L.: Diamond-like carbon applications in high density hard disc recording heads. Diamond Relat. Mater. 10(2), 271 (2001).Google Scholar
Hauert, R.: A review of modified DLC coatings for biological applications. Diamond Relat. Mater. 12(3), 583 (2003).Google Scholar
Ferrari, A.C.: Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol. 180, 190 (2004).Google Scholar
Singh, S., Pandey, M., Chand, N., Biswas, A., Bhattacharya, D., Dash, S., Tyagi, A., Dey, R., Kulkarni, S., and Patil, D.: Optical and mechanical properties of diamond like carbon films deposited by microwave ECR plasma CVD. Bull. Mater. Sci. 31(5), 813 (2008).Google Scholar
Allon-Alaluf, M., Appelbaum, J., Maharizi, M., Seidman, A., and Croitoru, N.: The influence of diamond-like carbon films on the properties of silicon solar cells. Thin Solid Films 303(1), 273 (1997).Google Scholar
Lee, C.H. and Lim, K.S.: Carrier transport through boron-doped amorphous diamond-like carbon p layer of amorphous silicon based p–i–n solar cells. Appl. Phys. Lett. 75(4), 569 (1999).Google Scholar
Hattori, Y., Kruangam, D., Toyama, T., Okamoto, H., and Hamakawa, Y.: Highly conductive p-type microcrystalline SiC:H prepared by ECR plasma CVD. Appl. Surf. Sci. 33, 1276 (1988).CrossRefGoogle Scholar
Hamakawa, Y., Toyama, T., and Okamoto, H.: Blue light emission from a-C:H by thin film electroluminescence structure cell. J. Non-Cryst. Solids 115(1), 180 (1989).CrossRefGoogle Scholar
Shim, J.Y., Chi, E.J., Baik, H.K., and Lee, S.M.: Structural, optical, and field emission properties of hydrogenated amorphous carbon films grown by helical resonator plasma enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 37(2R), 440 (1998).Google Scholar
Lu, Y., Huang, S., Huan, C., and Luo, X.: Amorphous hydrogenated carbon synthesized by pulsed laser deposition from cyclohexane. Appl. Phys. A 68(6), 647 (1999).CrossRefGoogle Scholar
Weissmantel, C., Bewilogua, K., Dietrich, D., Erler, H-J., Hinneberg, H-J., Klose, S., Nowick, W., and Reisse, G.: Structure and properties of quasi-amorphous films prepared by ion beam techniques. Thin Solid Films 72(1), 19 (1980).Google Scholar
Park, Y.S., Cho, H.J., and Hong, B.: Characteristics of conductive amorphous carbon (aC) films prepared by using the magnetron sputtering method. J. Korean Phys. Soc. 51(3), 1119 (2007).Google Scholar
Tay, B., Zhao, Z., and Chua, D.: Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Mater. Sci. Eng., R 52(1), 1 (2006).Google Scholar
Dwivedi, N., Kumar, S., Malik, H., Rauthan, C., and Panwar, O.: Correlation of sp 3 and sp 2 fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films. Appl. Surf. Sci. 257(15), 6804 (2011).CrossRefGoogle Scholar
Oliveira, É.C., Cruz, S.A., and Aguiar, P.H.: Effect of PECVD deposition parameters on the DLC/PLC composition of a-C:H thin films. J. Braz. Chem. Soc. 23(9), 1657 (2012).CrossRefGoogle Scholar
Wu, J., Wang, Y-L., and Kuo, C-T.: Plasma treatment effects on hydrogenated amorphous carbon films prepared by plasma-enhanced chemical vapor deposition. J. Phys. Chem. Solids 69(2), 505 (2008).Google Scholar
Ahmad, I., Roy, S., Rahman, M.A., Okpalugo, T., Maguire, P., and Mc Laughlin, J.: Substrate effects on the microstructure of hydrogenated amorphous carbon films. Curr. Appl. Phys. 9(5), 937 (2009).Google Scholar
Schwarz, C., Heeg, J., Rosenberg, M., and Wienecke, M.: Investigation on wear and adhesion of graded Si/SiC/DLC coatings deposited by plasma-enhanced-CVD. Diamond Relat. Mater. 17(7), 1685 (2008).Google Scholar
Cemin, F., Bim, L., Menezes, C., Aguzzoli, C., da Costa, M.M., Baumvol, I., Alvarez, F., and Figueroa, C.: On the hydrogenated silicon carbide (SiC x :H) interlayer properties prompting adhesion of hydrogenated amorphous carbon (a-C:H) deposited on steel. Vacuum 109, 180 (2014).Google Scholar
Glaude, A.S., Thomas, L., Tomasella, E., Badie, J., and Berjoan, R.: Selective effect of ion/surface interaction in low frequency PACVD of SiC:H films: Part B. Microstructural study. Surf. Coat. Technol. 201(1), 174 (2006).Google Scholar
Nass, K., Radi, P., Leite, D., Massi, M., da Silva Sobrinho, A., Dutra, R., Vieira, L., and Reis, D.: Tribomechanical and structural properties of a-SiC:H films deposited using liquid precursors on titanium alloy. Surf. Coat. Technol. 284, 240 (2015).Google Scholar
Soum-Glaude, A., Thomas, L., Tomasella, E., Badie, J., and Berjoan, R.: Selective effect of ion/surface interaction in low frequency PACVD of SiC:H films: Part A. Gas phase considerations. Surf. Coat. Technol. 200(1), 855 (2005).Google Scholar
Dischler, B., Bubenzer, A., and Koidl, P.: Bonding in hydrogenated hard carbon studied by optical spectroscopy. Solid State Commun. 48(2), 105 (1983).CrossRefGoogle Scholar
Couderc, P. and Catherine, Y.: Structure and physical properties of plasma-grown amorphous hydrogenated carbon films. Thin Solid Films 146(1), 93 (1987).CrossRefGoogle Scholar
Akkerman, Z., Efstathiadis, H., and Smith, F.: Thermal stability of diamond like carbon films. J. Appl. Phys. 80(5), 3068 (1996).Google Scholar
Basa, D. and Smith, F.: Annealing and crystallization processes in a hydrogenated amorphous SiC alloy film. Thin Solid Films 192(1), 121 (1990).Google Scholar
Lifshitz, Y., Kasi, S., Rabalais, J., and Eckstein, W.: Subplantation model for film growth from hyperthermal species. Phys. Rev. B: Condens. Matter Mater. Phys. 41(15), 10468 (1990).Google Scholar
Robertson, J.: The deposition mechanism of diamond-like a-C and a-C:H. Diamond Relat. Mater. 3(4–6), 361 (1994).Google Scholar
Rhallabi, A. and Catherine, Y.: Computer simulation of a carbon-deposition plasma in CH4 . IEEE Trans. Plasma Sci. 19(2), 270 (1991).Google Scholar
Mantzaris, N.V., Gogolides, E., Boudouvis, A.G., Rhallabi, A., and Turban, G.: Surface and plasma simulation of deposition processes: CH4 plasmas for the growth of diamond like carbon. J. Appl. Phys. 79(7), 3718 (1996).Google Scholar
Mutsukura, N. and Saitoh, K.: Temperature dependence of a-C:H film deposition in a CH4 radio frequency plasma. J. Vac. Sci. Technol., A 14(4), 2666 (1996).Google Scholar
Robertson, J.: Properties of diamond-like carbon. Surf. Coat. Technol. 50(3), 185 (1992).Google Scholar
Liu, X., Yamaguchi, R., Umehara, N., Deng, X., Kousaka, H., and Murashima, M.: Clarification of high wear resistance mechanism of ta-CN x coating under poly alpha-olefin (PAO) lubrication. Tribol. Int. 105, 193 (2017).Google Scholar
Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H., and Silva, S.: Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80(1), 440 (1996).CrossRefGoogle Scholar
Ferrari, A. and Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 64(7), 075414 (2001).Google Scholar
Colthup, N., Daly, L., and Wiberley, S.: Introduction to Infrared and Raman Spectroscopy, Vol. 23 (Academic Press, New York, 1975).Google Scholar
Nistor, L.C., Van Landuyt, J., Ralchenko, V., Kononenko, T., Obraztsova, E.D., and Strelnitsky, V.: Direct observation of laser-induced crystallization of a-C:H films. Appl. Phys. A 58(2), 137 (1994).Google Scholar
Cappelli, E., Orlando, S., Mattei, G., Zoffoli, S., and Ascarelli, P.: SEM and Raman investigation of RF plasma assisted pulsed laser deposited carbon films. Appl. Surf. Sci. 197, 452 (2002).Google Scholar
Paulmier, T., Bell, J.M., and Fredericks, P.M.: Deposition of nano-crystalline graphite films by cathodic plasma electrolysis. Thin Solid Films 515(5), 2926 (2007).Google Scholar
Sui, J., Gao, Z., Cai, W., and Zhang, Z.: Corrosion behavior of NiTi alloys coated with diamond-like carbon (DLC) fabricated by plasma immersion ion implantation and deposition. Mater. Sci. Eng., A 452, 518 (2007).Google Scholar
Shin, J-K., Lee, C.S., Lee, K-R., and Eun, K.Y.: Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films. Appl. Phys. Lett. 78(5), 631 (2001).Google Scholar
Ferrari, A., Rodil, S., and Robertson, J.: Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys. Rev. B: Condens. Matter Mater. Phys. 67(15), 155306 (2003).Google Scholar
Al-Jishi, R. and Dresselhaus, G.: Lattice-dynamical model for graphite. Phys. Rev. B: Condens. Matter Mater. Phys. 26(8), 4514 (1982).Google Scholar
Dillon, R., Woollam, J.A., and Katkanant, V.: Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B: Condens. Matter Mater. Phys. 29(6), 3482 (1984).CrossRefGoogle Scholar
Cho, N., Veirs, D., Ager Iii, J., Rubin, M., Hopper, C., and Bogy, D.: Effects of substrate temperature on chemical structure of amorphous carbon films. J. Appl. Phys. 71(5), 2243 (1992).Google Scholar
Herak, T., McLeod, R., Kao, K., Card, H., Watanabe, H., Katoh, K., Yasui, M., and Shibata, Y.: Undoped amorphous SiN x :H alloy semiconductors: Dependence of electronic properties on composition. J. Non-Cryst. Solids 69(1), 39 (1984).Google Scholar
Robertson, J. and O’reilly, E.: Electronic and atomic structure of amorphous carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 35(6), 2946 (1987).Google Scholar
Robertson, J.: Gap states in diamond-like amorphous carbon. Philos. Mag. B 76(3), 335 (1997).Google Scholar