We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the coupon collector’s problem with group drawings. Assume there are n different coupons. At each time precisely s of the n coupons are drawn, where all choices are supposed to have equal probability. The focus lies on the fluctuations, as $n\to\infty$, of the number $Z_{n,s}(k_n)$ of coupons that have not been drawn in the first $k_n$ drawings. Using a size-biased coupling construction together with Stein’s method for normal approximation, a quantitative central limit theorem for $Z_{n,s}(k_n)$ is shown for the case that $k_n=({n/s})(\alpha\log(n)+x)$, where $0<\alpha<1$ and $x\in\mathbb{R}$. The same coupling construction is used to retrieve a quantitative Poisson limit theorem in the boundary case $\alpha=1$, again using Stein’s method.
In the collector’s problem with group drawings, s out of n different types of coupon are sampled with replacement. In the uniform case, each s-subset of the types has the same probability of being sampled. For this case, we derive a Poisson limit theorem for the number of types that are sampled at most
$c-1$
times, where
$c \ge 1$
is fixed. In a specified approximate nonuniform setting, we prove a Poisson limit theorem for the special case
$c=1$
. As corollaries, we obtain limit distributions for the waiting time for c complete series of types in the uniform case and a single complete series in the approximate nonuniform case.
The objective of this study is to examine the asymptotic behavior of Betti numbers of Čech complexes treated as stochastic processes and formed from random points in the d-dimensional Euclidean space
${\mathbb{R}}^d$
. We consider the case where the points of the Čech complex are generated by a Poisson process with intensity nf for a probability density f. We look at the cases where the behavior of the connectivity radius of the Čech complex causes simplices of dimension greater than
$k+1$
to vanish in probability, the so-called sparse regime, as well when the connectivity radius is of the order of
$n^{-1/d}$
, the critical regime. We establish limit theorems in the aforementioned regimes: central limit theorems for the sparse and critical regimes, and a Poisson limit theorem for the sparse regime. When the connectivity radius of the Čech complex is
$o(n^{-1/d})$
, i.e. the sparse regime, we can decompose the limiting processes into a time-changed Brownian motion or a time-changed homogeneous Poisson process respectively. In the critical regime, the limiting process is a centered Gaussian process but has a much more complicated representation, because the Čech complex becomes highly connected with many topological holes of any dimension.
Let X1, …, Xn be independent random points drawn from an absolutely continuous probability measure with density f in ℝd. Under mild conditions on f, wederive a Poisson limit theorem for the number of large probability nearest-neighbour balls. Denoting by Pn the maximum probability measure of nearest-neighbour balls, this limit theorem implies a Gumbel extreme value distribution for nPn − ln n as n → ∞. Moreover, we derive a tight upper bound on the upper tail of the distribution of nPn − ln n, which does not depend on f.
In this paper we refine a Poisson limit theorem of Gnedenko and Kolmogorov (1954): we determine the error order of a Poisson approximation for sums of asymptotically negligible integer-valued random variables that converge in distribution to the Poisson law. As an application of our results, we investigate the case of the coupon collector's problem when the distribution of the collector's waiting time is asymptotically Poisson.
This paper establishes a compound Poisson limit theorem for the sum of a sequence of multi-state Markov chains. Our theorem generalizes an earlier one by Koopman for the two-state Markov chain. Moreover, a similar approach is used to derive a limit theorem for the sum of the k th-order two-state Markov chain.
A consecutive-k-out-of-n: F system consists of n components ordered on a line. Each component, and the system as a whole, has two states: it is either functional or failed. The system will fail if and only if at least k consecutive components fail. The components are not necessarily equal and we assume that components' failures are stochastically independent. Using a result of Barbour and Eagleson (1984) we find a bound for the distance of the distribution of system's lifetime from the Weibull distribution. Subsequently, using this bound limit theorems are derived under quite general conditions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.