We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article deals with kinetic Fokker–Planck equations with essentially bounded coefficients. A weak Harnack inequality for nonnegative super-solutions is derived by considering their log-transform and adapting an argument due to S. N. Kružkov (1963). Such a result rests on a new weak Poincaré inequality sharing similarities with the one introduced by W. Wang and L. Zhang in a series of works about ultraparabolic equations (2009, 2011, 2017). This functional inequality is combined with a classical covering argument recently adapted by L. Silvestre and the second author (2020) to kinetic equations.
Our aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $J_{\unicode[STIX]{x1D6FC}(\cdot )}^{\unicode[STIX]{x1D70E}}f$ of functions $f$ in Musielak–Orlicz–Morrey spaces $L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705}}(X)$. As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.
It is well known that assumptions of monotonicity in size-bias couplings may be used to prove simple, yet powerful, Poisson approximation results. Here we show how these assumptions may be relaxed, establishing explicit Poisson approximation bounds (depending on the first two moments only) for random variables which satisfy an approximate version of these monotonicity conditions. These are shown to be effective for models where an underlying random variable of interest is contaminated with noise. We also state explicit Poisson approximation bounds for sums of associated or negatively associated random variables. Applications are given to epidemic models, extremes, and random sampling. Finally, we also show how similar techniques may be used to relax the assumptions needed in a Poincaré inequality and in a normal approximation result.
Let d be the degree of an algebraic one-dimensional foliation $\mathcal F$ on the complex projective space ${\mathbb P}_n$ (i.e. the degree of the variety of tangencies of the foliation with a generic hyperplane). Let $\Gamma$ be an algebraic solution of degree $\delta$, and geometrical genus g. We prove, in particular, the inequality $(d-1)\delta+2-2g\geq {\mathcal B}(\Gamma)$, where ${\mathcal B}(\Gamma)$ denotes the total number of locally irreducible branches through singular points of $\Gamma$ when $\Gamma$ has singularities, and ${\mathcal B}(\Gamma)=1$ (instead of 0) when $\Gamma$ is smooth. Equivalently, when $\Gamma=\bigcap_{\lambda=1}^{n-1} S_\lambda$ is the complete intersection of n - 1 algebraic hypersurfaces $S_\lambda$, we get $(d+n-\sum_{\lambda=1}^{n-1}\delta_\lambda)\delta \geq {\mathcal B}(\Gamma)-{\mathcal E}(\Gamma)$, where $\delta_\lambda$ denotes the degree of $S_\lambda$ and ${\mathcal E}(\Gamma)=2-2g+(\sum_\lambda\delta_\lambda-(n+1))\delta$ the correction term in the genus formula. These results are also refined when $\Gamma$ is reducible.
We show that Poincaré inequalities with reverse doubling weights hold in a large class of irregular domains whenever the weights satisfy certain conditions. Examples of these domains are John domains.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.