Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T18:25:35.188Z Has data issue: false hasContentIssue false

SOBOLEV’S INEQUALITY FOR MUSIELAK–ORLICZ–MORREY SPACES OVER METRIC MEASURE SPACES

Published online by Cambridge University Press:  02 October 2019

TAKAO OHNO*
Affiliation:
Faculty of Education, Oita University, Dannoharu, Oita-city870-1192, Japan
TETSU SHIMOMURA
Affiliation:
Department of Mathematics, Graduate School of Education, Hiroshima University, Higashi-Hiroshima739-8524, Japan e-mail: tshimo@hiroshima-u.ac.jp

Abstract

Our aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $J_{\unicode[STIX]{x1D6FC}(\cdot )}^{\unicode[STIX]{x1D70E}}f$ of functions $f$ in Musielak–Orlicz–Morrey spaces $L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705}}(X)$. As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Communicated by C. Meaney

References

Acerbi, E. and Mingione, G., ‘Regularity results for stationary electro-rheological fluids’, Arch. Ration. Mech. Anal. 164 (2002), 213259.CrossRefGoogle Scholar
Adams, D. R., ‘A note on Riesz potentials’, Duke Math. J. 42 (1975), 765778.CrossRefGoogle Scholar
Adams, D. R. and Hedberg, L. I., Function Spaces and Potential Theory (Springer, Berlin, 1996).CrossRefGoogle Scholar
Ahmida, Y., Chlebicka, I., Gwiazda, P. and Youssfi, A., ‘Gossez’s approximation theorems in Musielak–Orlicz–Sobolev spaces’, J. Funct. Anal. 275(9) (2018), 25382571.CrossRefGoogle Scholar
Almeida, A., Hasanov, J. and Samko, S., ‘Maximal and potential operators in variable exponent Morrey spaces’, Georgian Math. J. 15 (2008), 195208.CrossRefGoogle Scholar
Baroni, P., Colombo, M. and Mingione, G., ‘Harnack inequalities for double phase functionals’, Nonlinear Anal. 121 (2015), 206222.CrossRefGoogle Scholar
Baroni, P., Colombo, M. and Mingione, G., ‘Non-autonomous functionals, borderline cases and related function classes’, St. Petersburg Math. J. 27 (2016), 347379.CrossRefGoogle Scholar
Baroni, P., Colombo, M. and Mingione, G., ‘Regularity for general functionals with double phase’, Calc. Var. Partial Differential Equations 57 (2018), Article 62.CrossRefGoogle Scholar
Björn, A. and Björn, J., Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, 17 (European Mathematical Society (EMS), Zurich, 2011).CrossRefGoogle Scholar
Chen, Y., Levine, S. and Rao, M., ‘Variable exponent, linear growth functionals in image restoration’, SIAM J. Appl. Math. 66(4) (2006), 13831406.CrossRefGoogle Scholar
Chiarenza, F. and Frasca, M., ‘Morrey spaces and Hardy–Littlewood maximal function’, Rend. Mat. Appl. (7) 7 (1987), 273279.Google Scholar
Colasuonno, F. and Squassina, M., ‘Eigenvalues for double phase variational integrals’, Ann. Mat. Pura Appl. (4) 195(6) (2016), 19171959.CrossRefGoogle Scholar
Colombo, M. and Mingione, G., ‘Regularity for double phase variational problems’, Arch. Ration. Mech. Anal. 215(2) (2015), 443496.CrossRefGoogle Scholar
Colombo, M. and Mingione, G., ‘Bounded minimizers of double phase variational integrals’, Arch. Ration. Mech. Anal. 218 (2015), 219273.CrossRefGoogle Scholar
Cruz-Uribe, D. and Fiorenza, A., Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis (Birkhauser/Springer, Heidelberg, 2013).CrossRefGoogle Scholar
Diening, L., Harjulehto, P., Hästö, P. and Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017 (Springer, Heidelberg, 2011).CrossRefGoogle Scholar
Guliyev, V. S., Hasanov, J. and Samko, S., ‘Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces’, Math. Scand. 107 (2010), 285304.CrossRefGoogle Scholar
Guliyev, V. S., Hasanov, J. and Samko, S., ‘Boundedness of the maximal, potential and singular integral operators in the generalized variable exponent Morrey type spaces’, J. Math. Sci. 170(4) (2010), 423443.CrossRefGoogle Scholar
Hajłasz, P. and Koskela, P., ‘Sobolev met Poincaré’, Mem. Amer. Math. Soc. 145(688) (2000), x+101 pp.Google Scholar
Harjulehto, P. and Hästö, P., ‘Boundary regularity under generalized growth conditions’, Z. Anal. Anwend. 38(1) (2019), 7396.CrossRefGoogle Scholar
Harjulehto, P., Hästö, P. and Karppinen, A., ‘Local higher integrability of the gradient of a quasiminimizer under generalized Orlicz growth conditions’, Nonlinear Anal. 177 (2018), 543552.CrossRefGoogle Scholar
Harjulehto, P., Hästö, P. and Latvala, V., ‘Sobolev embeddings in metric measure spaces with variable dimension’, Math. Z. 254(3) (2006), 591609.CrossRefGoogle Scholar
Harjulehto, P., Hästö, P., Latvala, V. and Toivanen, O., ‘Critical variable exponent functionals in image restoration’, Appl. Math. Lett. 26 (2013), 5660.CrossRefGoogle Scholar
Harjulehto, P., Hästö, P. and Pere, M., ‘Variable exponent Sobolev spaces on metric measure spaces’, Funct. Approx. Comment. Math. 36 (2006), 7994.CrossRefGoogle Scholar
Hästö, P., ‘The maximal operator on generalized Orlicz spaces’, J. Funct. Anal. 269(12) (2015), 40384048; Corrigendum to ‘The maximal operator on generalized Orlicz spaces’, J. Funct. Anal. 271(1) (2016), 240–243.CrossRefGoogle Scholar
Maeda, F.-Y., Mizuta, Y., Ohno, T. and Shimomura, T., ‘Boundedness of maximal operators and Sobolev’s inequality on Musielak–Orlicz–Morrey spaces’, Bull. Sci. Math. 137 (2013), 7696.CrossRefGoogle Scholar
Maeda, F.-Y., Mizuta, Y., Ohno, T. and Shimomura, T., ‘Hardy’s inequality in Musielak–Orlicz–Sobolev spaces’, Hiroshima Math. J. 44 (2014), 139155.CrossRefGoogle Scholar
Maeda, F.-Y., Mizuta, Y., Ohno, T. and Shimomura, T., ‘Sobolev’s inequality for double phase functionals with variable exponents’, Forum Math. 31(2) (2019), 517527.CrossRefGoogle Scholar
Maeda, F.-Y., Ohno, T. and Shimomura, T., ‘Boundedness of the maximal operator on Musielak–Orlicz–Morrey spaces’, Tohoku Math. J. 69(4) (2017), 483495.CrossRefGoogle Scholar
Maeda, F.-Y., Sawano, Y. and Shimomura, T., ‘Some norm inequalities in Musielak–Orlicz spaces’, Ann. Acad. Sci. Fenn. Math. 41 (2016), 721744.CrossRefGoogle Scholar
Mizuta, Y., Nakai, E., Ohno, T. and Shimomura, T., ‘Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent’, Complex Var. Elliptic Equ. 56(7–9) (2011), 671695.CrossRefGoogle Scholar
Mizuta, Y., Ohno, T. and Shimomura, T., ‘Sobolev inequalities for Musielak–Orlicz spaces’, Manuscripta Math. 155(1–2) (2018), 209227.CrossRefGoogle Scholar
Mizuta, Y. and Shimomura, T., ‘Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent’, J. Math. Soc. Japan 60 (2008), 583602.CrossRefGoogle Scholar
Morrey, C. B., ‘On the solutions of quasi-linear elliptic partial differential equations’, Trans. Amer. Math. Soc. 43 (1938), 126166.CrossRefGoogle Scholar
Nakai, E., ‘Hardy–Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces’, Math. Nachr. 166 (1994), 95103.CrossRefGoogle Scholar
Nakai, E., ‘Generalized fractional integrals on Orlicz–Morrey spaces’, in: Banach and Function Spaces (Yokohama Publishers, Yokohama, 2004), 323333.Google Scholar
Ohno, T. and Shimomura, T., ‘Trudinger’s inequality and continuity for Riesz potentials of functions in Musielak–Orlicz–Morrey spaces on metric measure spaces’, Nonlinear Anal. 106 (2014), 117.CrossRefGoogle Scholar
Ohno, T. and Shimomura, T., ‘Musielak–Orlicz–Sobolev spaces on metric measure spaces’, Czechoslovak Math. J. 65(140) (2015), 435474.CrossRefGoogle Scholar
Ohno, T. and Shimomura, T., ‘Musielak–Orlicz–Sobolev spaces with zero boundary values on metric measure spaces’, Czechoslovak Math. J. 66(141) (2016), 371394.CrossRefGoogle Scholar
Ohno, T. and Shimomura, T., ‘Maximal and Riesz potential operators on Musielak–Orlicz spaces over metric measure spaces’, Integral Equations Operator Theory 90 (2018), Article 62.CrossRefGoogle Scholar
Peetre, J., ‘On the theory of L p, 𝜆 spaces’, J. Funct. Anal. 4 (1969), 7187.CrossRefGoogle Scholar
Růžička, M., Electrorheological Fluids: Modeling and Mathematical Theory (Springer, Berlin, 2000).CrossRefGoogle Scholar