In the present paper, we have investigated self-focusing of Gaussian laser beam in relativistic ponderomotive (RP) cold quantum plasma. When de Broglie wavelength of charged particles is greater than or equal to the inter particle distance or equivalently the temperature is less than or equal to the Fermi temperature, quantum nature of the plasma constituents cannot be ignored. In this context, we have reported self-focusing on account of nonlinear dielectric contribution of RP plasma by taking into consideration the impact of quantum effects. We have setup the nonlinear differential equation for the beam-width parameter by paraxial ray and Wentzel Kramers Brillouin approximation and solved it numerically by the Runge Kutta Fourth order method. Our results show that additional self-focusing is achieved in case of RP cold quantum plasma than relativistic cold quantum plasma and classical relativistic case. The pinching effect offered by quantum plasma and the combined effect of relativistic and ponderomotive nonlinearity greatly enhances laser propagation up to 20 Rayleigh lengths.