Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T12:12:17.505Z Has data issue: false hasContentIssue false

Combined effect of relativistic and ponderomotive nonlinearity on self-focusing of Gaussian laser beam in a cold quantum plasma

Published online by Cambridge University Press:  20 June 2016

H. Kumar
Affiliation:
Research Scholar, I.K Gujral Punjab Technical University, Kapurthala-144601, India
M. Aggarwal*
Affiliation:
Department of Applied Science, Lyallpur Khalsa College of Engineering, Jalandhar 144001, India
Richa
Affiliation:
Research Scholar, I.K Gujral Punjab Technical University, Kapurthala-144601, India
T.S. Gill
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar-143005, India
*
Address correspondence and reprint requests to: M. Aggarwal, Department of Applied Science, Lyallpur Khalsa College of Engineering, Jalandhar 144001, India. E-mail: sonuphy333@gmail.com

Abstract

In the present paper, we have investigated self-focusing of Gaussian laser beam in relativistic ponderomotive (RP) cold quantum plasma. When de Broglie wavelength of charged particles is greater than or equal to the inter particle distance or equivalently the temperature is less than or equal to the Fermi temperature, quantum nature of the plasma constituents cannot be ignored. In this context, we have reported self-focusing on account of nonlinear dielectric contribution of RP plasma by taking into consideration the impact of quantum effects. We have setup the nonlinear differential equation for the beam-width parameter by paraxial ray and Wentzel Kramers Brillouin approximation and solved it numerically by the Runge Kutta Fourth order method. Our results show that additional self-focusing is achieved in case of RP cold quantum plasma than relativistic cold quantum plasma and classical relativistic case. The pinching effect offered by quantum plasma and the combined effect of relativistic and ponderomotive nonlinearity greatly enhances laser propagation up to 20 Rayleigh lengths.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Uspekhi 10, 609636.Google Scholar
Andreev, A.V. (2000). Self-consistent equations for the interaction of an atom with an electromagnetic field of arbitrary intensity. J. Exp. Theor. Phys. Lett. 72, 238.Google Scholar
Asenjo, F.A., Munoz, V., Valdivia, J.A. & Mahajan, S.M. (2011). A hydrodynamical model for relativistic spin quantum plasmas. Phys. Plasmas 18, 012107.CrossRefGoogle Scholar
Askari, H.R. & Azish, Z. (2011). Effect of a periodic magnetic field on phase matching condition in second harmonic generation at interactions of laser-plasma. Optik 122, 1159.Google Scholar
Azechi, H. (2006). Present status of the FIREX programme for the demonstration of ignition and burn. Plasma Phys. Controlled Fusion 48, B267.Google Scholar
Benvenuto, O.G. & De Vito, M.A. (2005). The formation of helium white dwarfs in close binary systems – II. Mon. Not. R. Astron. Soc. 362, 891.CrossRefGoogle Scholar
Bokaei, B., Niknam, A.R. & Jafari Milani, M.R. (2013). Turning point temperature and competition between relativistic and ponderomotive effects in self-focusing of laser beam in plasma. Phys. Plasmas 20, 103107.Google Scholar
Borisov, A.B., Borovskiy, A.V., Shiryaev, O.B., Korobkin, V.V., Prokhorov, A.M., Solem, J.C., Luk, T.S., Boyer, K. & Rhodes, C.K. (1992). Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 5830.Google Scholar
Brandi, H.S., Manus, C. & Mainfray, G. (1993 a). Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. I. Paraxial approximation. Phys. Fluids B 5, 3539.Google Scholar
Brandi, H.S., Manus, C., Mainfray, G. & Lehner, T. (1993 b). Relativistic self-focusing of ultraintense laser pulses in inhomogeneous underdense plasmas. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 47, 3780.Google Scholar
Bulanov, S.V., Esirkepov, T.Zh., Habs, D., Pegoraro, F. & Tajima, T. (2009). Relativistic laser-matter interaction and relativistic laboratory astrophysics. Eur. Phys. J. D 55, 483.Google Scholar
Corkum, P.B., Rolland, C. & Rao, T. (1986). Supercontinuum generation in gases. Phys. Rev. Lett. 57, 22682271.Google Scholar
Crouseilles, N., Hervieux, P.A. & Manfredi, G. (2008). Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films. Phys. Rev. B 78, 155412.CrossRefGoogle Scholar
Eder, D.C., Amendt, P. & Wilks, S.C. (1992). Optical-field-ionized plasma x-ray lasers. Phys. Rev. A 45, 6761.CrossRefGoogle ScholarPubMed
Glenzer, S.H. & Redmer, R. (2009). X-ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys. 81, 1625.CrossRefGoogle Scholar
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 31.CrossRefGoogle Scholar
Haas, F., Eliasson, B. & Shukla, P.K. (2012). Relativistic Klein-Gordon-Maxwell multistream model for quantum plasmas. Phys. Rev. E 85, 056411.Google Scholar
Harding, A.K. & Lai, D. (2006). Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69, 2631.Google Scholar
Honda, M., Meyer-ter-Vehn, J. & Pukhov, A. (2000). Two-dimensional particle-in-cell simulation for magnetized transport of ultra-high relativistic currents in plasma. Phys. Plasmas 7, 1302.Google Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 37.Google Scholar
Hu, S.X. & Keitel, C.H. (1999). Spin signatures in intense laser-ion interaction. Phys. Rev. Lett. 83, 4709.Google Scholar
Jung, Y.D. (2001). Quantum-mechanical effects on electron–electron scattering in dense high-temperature plasmas. Phys. Plasmas 8, 3842.Google Scholar
Jung, Y.D. & Murakami, I. (2009). Quantum effects on magnetization due to ponderomotive force in cold quantum plasmas. Phys. Lett. A 373, 969971.Google Scholar
Lai, D. (2001). Matter in strong magnetic fields. Rev. Mod. Phys. 73, 629.Google Scholar
Lemoff, B.E., Yin, G.Y., Gordon, C.L., Barthy, C.P.J. & Harris, S.E. (1995). Demonstration of a 10-Hz Femtosecond-Pulse-Driven XUV Laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 1574.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2001). Self-focusing and frequency broadening of an intense short-pulse laser in plasmas. J. Opt. Soc. Am. A 18, 1714.Google Scholar
Lourenco, S., Kowarsch, N., Scheid, W. & Wang, P.X. (2010). Acceleration of electrons and electromagnetic fields of highly intense laser pulses. Laser Part. Beams 28, 195.Google Scholar
Marklund, M. & Brodin, G. (2007). Dynamics of Spin-1 2 quantum plasmas. Phys. Rev. Lett. 98, 025001.Google Scholar
Marklund, M., Brodin, G., Stenflo, L. & Liu, C.S. (2008). New quantum limits in plasmonic devices. Europhys. Lett. 84, 17006.Google Scholar
Marklund, M. & Shukla, P.K. (2006). Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78, 591.Google Scholar
Masood, W., Mirza, A.M. & Nargis, S. (2008). Dust acoustic vortices in an inhomogeneous quantum magnetoplasma with dissipation and sheared dust flows. Phys. Plasmas 15, 103703.Google Scholar
Masood, W., Siddiq, M., Mirza, A.M. & Nargis, S. (2009). Propagation and stability of quantum dust-ion-acoustic shock waves in planar and nonplanar geometry. Phys. Plasmas 16, 013705.Google Scholar
Max, C.E., Arons, J. & Langdon, A.B. (1974). Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209.CrossRefGoogle Scholar
Mendonca, J.T. (2011). Wave kinetics of relativistic quantum plasmas. Phys. Plasmas 18, 062101.CrossRefGoogle Scholar
Monot, P., Auguste, T., Gibbon, P., Jakober, F., Mainfray, G., Dulieu, A., Louis- Jacquet, M., Malka, G. & Miquel, J.L. (1995). Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 2953.Google Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospectives. Laser Part. Beams 22, 5.Google Scholar
Ozbay, E. (2006). Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189.Google Scholar
Parashar, J. (2009). Resonant second harmonic generation in a plasma filled parallel plane waveguide. Indian J. Pure Appl. Phys. 47, 103.Google Scholar
Parashar, J., Pandey, H.D. & Tripathi, V.K. (1997). Two-dimensional effects in a tunnel ionized plasma. Phys. Plasmas 4, 3040.Google Scholar
Patil, S.D. & Takale, M.V. (2013 a). Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma. Phys. Plasmas 20, 072703.Google Scholar
Patil, S.D. & Takale, M.V. (2013 b). Self-focusing of Gaussian laser beam in weakly relativistic and ponderomotive regime using upward ramp of plasma density. Phys. Plasmas 20, 083101.CrossRefGoogle Scholar
Patil, S.D. & Takale, M.V. (2013 c). Weakly relativistic ponderomotive effects on self-focusing in the interaction of cosh-Gaussian laser beams with a plasma. Laser Phys. Lett. 10, 115402.Google Scholar
Patil, S.D. & Takale, M.V. (2014). Response to “Comment on ‘Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma’” [Phys. Plasmas 21, 064701 (2014)]. Phys. Plasmas 21, 064702.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V., Navare, S.T., Dongare, M.B. & Fulari, V.J. (2013 a). Self-focusing of Gaussian laser beam in relativistic cold quantum plasma. Optiks 124, 180183.Google Scholar
Patil, S.D., Takale, M.V., Navare, S.T., Fulari, V.J. & Dongare, M.B. (2012). Relativistic self-focusing of cosh-Gaussian laser beams in a plasma. Optics & Laser Technology 44, 314317.Google Scholar
Patil, S.D., Takale, M.V., Fulari, V.J., Gupta, D.N. & Suk, H. (2013 b). Combined effect of ponderomotive and relativistic self-focusing on laser beam propagation in a plasma. Appl. Phys. B 111, 16.Google Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (1996). Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 3975.Google Scholar
Schmidt, G. & Horton, W. (1985). Self-focusing of laser beams in the beat-wave accelerator. Comments Plasma Phy. Contr. Fusion 9, 85.Google Scholar
Shpatakovskaya, G. (2006). Semiclassical model of a one-dimensional quantum dot. J. Exp. Theor. Phys. 102, 466.Google Scholar
Shukla, P.K., Ali, S., Stenflo, L. & Marklund, M. (2006). Nonlinear wave interactions in quantum magnetoplasmas. Phys. Plasmas 13, 112111.Google Scholar
Shukla, P.K. & Eliasson, B. (2007). Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas. Phys. Rev. Lett. 99, 096401.Google Scholar
Shukla, P.K. & Stenflo, L. (2006). Stimulated scattering instabilities of electromagnetic waves in an ultracold quantum plasma. Phys. Plasmas 13, 044505.Google Scholar
Singh, A., Aggarwal, M. & Gill, T.S. (2009). Dynamics of Gaussian spikes on Gaussian laser beam in relativistic plasma. Laser Part. Beams 27, 587593.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Progress in Optics (Wolf, E., ed.), Vol. XIII. Amsterdam: North Holland Publ. Co. Google Scholar
Tripathi, V.K., Taguchi, T. & Liu, C.S. (2005). Plasma channel charging by an intense short pulse laser and ion Coulomb explosion. Phys. Plasmas 12, 043106.Google Scholar
Uhm, H.S., Nam, I.H. & Suk, H. (2012). Scaling laws of design parameters for plasma wakefield accelerators. Phys. Lett. A 376, 165.Google Scholar
Wei, L. & Wang, Y. (2007). Quantum ion-acoustic waves in single-walled carbon nanotubes studied with a quantum hydrodynamic model. Phys. Rev. B 75, 193407.CrossRefGoogle Scholar
Wilks, S.C., Dawson, J.M., Mori, W.B., Katsouleas, T. & Jones, M.E. (1989). Photon accelerator. Phys. Rev. Lett. 62, 2600.Google Scholar
Winterberg, F. (2008). Lasers for inertial confinement fusion driven by high explosives. Laser Part. Beams 26, 127.Google Scholar
Zare, S., Rezaee, S., Yazdani, E., Anvari, A. & Sadighi-Bonabi, R. (2015 a). Relativistic Gaussian laser beam self-focusing in collisional quantum plasmas. Laser Part. Beams 33, 397403.Google Scholar
Zare, S., Yazdani, E., Rezaee, S., Anvari, A. & Sadighi-Bonabi, R. (2015 b). Relativistic self-focusing of intense laser beam in thermal collisionless quantum plasma with ramped density profile. Phys. Rev. ST Accel. Beams 18, 041301.Google Scholar