The removal of pesticide contaminants from water is a key priority in environmental remediation, and requires intensive effort; this necessitates modification of the properties of pillared clays (PILCs) such as porosity, pore-volume, surface area, and synthesis methods. The purpose of the present study was to test the ability of Al-pillared bentonite (Al-PILB), using [Al13O4(OH)24(H2O)12]7+ and [Al30O8(OH)56(H2O)24]18+ (keggin cations, Al13 and Al30) as pillars, to adsorb chlorinated pesticides from contaminated water. In order to maximize intercalation and uniformity of layer stacking, various ratios of the nitrate forms of the synthesized keggin cations were intercalated into the natural bentonite (BT). The synthesized materials (Al-PILBs) were characterized by various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Fourier-transform infrared (FTIR) spectroscopy, UV-Vis spectroscopy, and N2 adsorption-desorption measurements. Increases in basal spacing, surface area, and pore volume were observed. The adsorption capacity of the Al-PILBs for 17 types of chlorinated pesticides from contaminated water was better than using the BT alone, e.g. for heptachlor epoxide, dieldrin, and endrin at natural pH, the maximum adsorptions obtained at equilibrium solution concentrations of 16, 20, and 20 μg/L, respectively, were 59.2, 59.15, and 60 μg/g, whereas corresponding values using pristine BT were 34.68, 39.45, and 38.9, respectively. The data were best described by the Freundlich adsorption model.