We investigate the global Cauchy problem for a two–phase flow model consisting of the pressureless Euler equations coupled with the isentropic compressible Navier–Stokes equations through a drag forcing term. This model was first derived by Choi–Kwon [J. Differential Equations, 261(1) (2016), pp. 654–711] by taking the hydrodynamic limit of the Vlasov/compressible Navier–Stokes equations. Under the assumption that the initial perturbation is sufficiently small, Choi–Kwon [J. Differential Equations, 261(1) (2016), pp. 654–711] established the global well–posedness and large time behaviour for the three dimensional periodic domain $\mathbb {T}^3$. However, up to now, the global well–posedness and large time behaviour for the three dimensional Cauchy problem still remain unsolved. In this paper, we resolve this problem by proving the global existence and optimal decay rates of classic solutions for the three dimensional Cauchy problem when the initial data is near its equilibrium. One of key observations here is that to overcome the difficulties arising from the absence of pressure in the Euler equations, we make full use of the drag forcing term and the dissipative structure of the Navier–Stokes equations to closure the energy estimates of the variables for the pressureless Euler equations.