We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the singularity at the origin of $\mathbb{C}^{n+1}$ of an arbitrary homogeneous polynomial in $n+1$ variables with complex coefficients, by investigating the monodromy characteristic polynomials $\unicode[STIX]{x1D6E5}_{l}(t)$ as well as the relation between the monodromy zeta function and the Hodge spectrum of the singularity. In the case $n=2$, we give a description of $\unicode[STIX]{x1D6E5}_{C}(t)=\unicode[STIX]{x1D6E5}_{1}(t)$ in terms of the multiplier ideal.
Let $V$ be a hypersurface with an isolated singularity at the origin defined by the holomorphic function $f:(\mathbb{C}^{n},0)\rightarrow (\mathbb{C},0)$. The Yau algebra, $L(V)$, is the Lie algebra of derivations of the moduli algebra of $V$. It is a finite-dimensional solvable algebra and its dimension $\unicode[STIX]{x1D706}(V)$ is the Yau number. Fewnomial singularities are those which can be defined by an $n$-nomial in $n$ indeterminates. Yau and Zuo [‘A sharp upper estimate conjecture for the Yau number of weighted homogeneous isolated hypersurface singularity’, Pure Appl. Math. Q.12(1) (2016), 165–181] conjectured a bound for the Yau number and proved that this conjecture holds for binomial isolated hypersurface singularities. In this paper, we verify this conjecture for weighted homogeneous fewnomial surface singularities.
The purpose of this paper is to give an explicit formula of the Łojasiewicz exponent of an isolated weighted homogeneous singularity in terms of its weights.
In this paper we consider the problem of explicitly finding canonical ideals of one-dimensional Cohen–Macaulay local rings. We show that Gorenstein ideals contained in a high power of the maximal ideal are canonical ideals. In the codimension 2 case, from a Hilbert–Burch resolution, we show how to construct canonical ideals of curve singularities. Finally, we translate the problem of the analytic classification of curve singularities to the classification of local Artin Gorenstein rings with suitable length.
In this paper we review the classification of isolated quotient singularities over the field of complex numbers due to Zassenhaus, Vincent and Wolf. As an application, we describe Gorenstein isolated quotient singularities over ℂ, generalizing a result of Kurano and Nishi.
A singularity is said to be weakly exceptional if it has a unique purely log terminal blow-up. This is a natural generalization of the surface singularities of types Dn, E6, E7 and E8. Since this idea was introduced, quotient singularities of this type have been classified in dimensions up to at most 4. This note extends that classification to dimension 5.
We construct a Legendrian version of envelope theory. A tangential family is a one-parameter family of rays emanating tangentially from a regular plane curve. The Legendrian graph of the family is the union of the Legendrian lifts of the family curves in the projectivized cotangent bundle $PT^*\mathbb{R}^2$. We study the singularities of Legendrian graphs and their stability under small tangential deformations. We also find normal forms of their projections into the plane. This allows us to interpret the beak-to-beak perestroika as the apparent contour of a deformation of the double Whitney umbrella singularity $A_1^\pm$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.