We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The purpose of this paper is to give an explicit formula of the Łojasiewicz exponent of an isolated weighted homogeneous singularity in terms of its weights.
1.Abderrahmane, O. M., On the Łojasiewicz exponent and Newton polyhedron, Kodai Math. J.28 (2005), 106–110.Google Scholar
2
2.Arnold, V. I., Gusein-Zade, S. M. and Varchenko, A. N., Singularities of Differentiable Maps, Vol. 1, Mono- graphs Math., vol. 82 (Birkhäuser, Boston, 1985).Google Scholar
4.Brzostowski, S., Krasiński, T. and Oleksik, G., A conjecture on the Lojasiewicz exponent, J. Singularities6 (2012), 124–130.Google Scholar
5
5.Chadzyński, J. and Krasiński, T., The Łojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero, in Singularities (PWN, Warszawa, 1988), 139–146.Google Scholar
6
6.Lenarcik, A., On the Łojasiewicz exponent of the gradient of a holomorphic function, in Singularities SymposiumÎ Łojasiewicz 70, Banach Center Publications, vol. 44 (PWN, Warszawa, 1998), 149–166.Google Scholar
7
7.Fukui, T., Łojasiewicz type inequalities and Newton diagrams, Proc. Amer. Math. Soc.112 (1991), 1169–1183.Google Scholar
8
8.Greuel, G.-M., Constant Milnor number implies constant multiplicity for quasihomogeneous singularities, Manuscritpta Math.56 (1986), 159–166.Google Scholar
9
9.Krasiński, T., Oleksik, G. and Płoski, A., The Łojasiewicz exponent of an isolated weighted homogeneous surface singularity, Proc. Amer. Math. Soc.137 (2009), 3387–3397.Google Scholar
10
10.Kuo, T. C. and Lu, Y. C., On analytic function germs of two complex variables, Topology16 (1977), 299–310.Google Scholar
11
11.Lejeune-Jalabert, M. and Teissier, B., Clôture integrale des idéaux et équisingularite, Séminaire Lejeune-Teissier} Centre de Mathématiques, École Polytechnique (Université Scientifique et Medicale de Grenoble, 1974).Google Scholar
12
12.Lê, D. T. and Ramanujam, C. P., Invariance of Milnor's number implies the invariance of topological type, Amer. J. Math.98 (1976), 67–78.Google Scholar
13
13.Lê, D.T. and Saito, K., La constence du nombre de Milnor donne des bonnes stratifications, Compt. Rendus Acad. Sci. Paris, série A272 (1973), 793–795.Google Scholar
14
14.Lichtin, B., Estimation of Łojasiewicz exponents and Newton polygons, Invent. Math.64 (1981), 417–429.Google Scholar
15
15.Milnor, J., Singular points of complex hypersurfaces (Princeton University Press, Princeton, NJ, 1968).Google Scholar
16
16.Milnor, J. and Orlik, P., Isolated singularities defined by weighted homogeneous polynomials, Topology9 (1970), 385–393.Google Scholar
17
17.O'Shea, D. B., Topologically trivial deformations of isolated quasihomogeneous singularities are equimultiple, Proc. A.M.S.101(2) (1987), 260–262.CrossRefGoogle Scholar
18
18.Paunescu, L., A weighted version of the Kuiper-Kuo-Bochnak-Łojasiewicz theorem, J. Algebr. Geom.2 (1993), 69–79.Google Scholar
19
19.Płoski, A., Sur l'exposant d'une application analytique. I, Bull. Polish Acad. Sci. Math.32 (1984), 669–673.Google Scholar
20
20.Ploski, A., Semicontinuity of the Lojasiewicz exponent, Univ. Iagel. Acta Math.48 (2010), 103–110.Google Scholar
21
21.Tan, S., Yau, S. S.-T. and Zuo, H., Łojasiewicz inequality for weighted homogeneous polynomial with isolated singularity, Proc. Amer. Math. Soc.138 (2010), 3975–3984.Google Scholar
23.Varchenko, A. N., A lower bound for the codimension of the stratum μ-constant in term of the mixed Hodge structure, Vest. Mosk. Univ. Mat.37 (1982), 29–31Google Scholar