We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is a well-known result that if a nonconstant meromorphic function $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}f$ on $\mathbb{C}$ and its $l$th derivative $f^{(l)}$ have no zeros for some $l\geq 2$, then $f$ is of the form $f(z)=\exp (Az+B)$ or $f(z)=(Az+B)^{-n}$ for some constants $A$, $B$. We extend this result to meromorphic functions of several variables, by first extending the classic Tumura–Clunie theorem for meromorphic functions of one complex variable to that of meromorphic functions of several complex variables using Nevanlinna theory.
We investigate the multivariate sampling theory associated with multiparameter eigenvalue problems. A several-variable counterpart of the classical sampling theorem of Whittaker, Kotel’nikov and Shannon is given. It arose when the multiparameter system has order one. Two-dimensional sampling theorems associated with two-parameter systems of second-order differential operators will be established. The sampling formulae are of multivariate non-uniform Lagrange interpolation type. Unlike many of the known formulae, the interpolating functions are not necessarily products of single variable functions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.