In order to evaluate a communication system, we need to model the propagation channel of the relevant environments pertaining to that communication. In this paper, we propose a Geometry-Based Stochastic Channel Modeling approach to build up propagation channel simulations to assess the performance of vehicle-to-vehicle wireless communications. Our methodology allows the simulation of dynamic scenarios, with an electromagnetic simulator, to emulate typical propagation environments (rural, highway and urban-like propagation channels). Simple metallic plates are used to represent scatterers in the simulated geometric configurations. The common characteristics defining a propagation channel such as delay spread, angle of arrival distribution, and the delay-Doppler spectrum are obtained through adjustment of the number and location of those simple metallic plates.