This paper presents numerical simulations to study the heating of a solid target under a proton beam pulse interaction. The target is heated by the proton beam pulse with particle energy Eb, intensity N and focal radius rb of transverse Gaussian distribution, with a fixed pulse time 10 ps. The dynamics of target and beam ions are described by a classical hydrodynamic model and the target electrons are described by the quantum hydrodynamic model. Numerical simulations are carried out by employing the two dimensional flux-corrected transport methods. The target is heated to 0.5−5 eV, therefore, warm dense matter is created in the heated target region on a picosecond time scale.