Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T07:20:27.347Z Has data issue: false hasContentIssue false

Simulations of interactions of high-energy proton beam with high dense matter based on two-dimensional quantum hydrodynamic model

Published online by Cambridge University Press:  09 July 2013

Ya Zhang
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
Yuan-Hong Song
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
You-Nian Wang*
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
*
Address correspondence and reprint requests to: You-Nian Wang, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China116024. E-mail: ynwang@dlut.edu.cn

Abstract

This paper presents numerical simulations to study the heating of a solid target under a proton beam pulse interaction. The target is heated by the proton beam pulse with particle energy Eb, intensity N and focal radius rb of transverse Gaussian distribution, with a fixed pulse time 10 ps. The dynamics of target and beam ions are described by a classical hydrodynamic model and the target electrons are described by the quantum hydrodynamic model. Numerical simulations are carried out by employing the two dimensional flux-corrected transport methods. The target is heated to 0.5−5 eV, therefore, warm dense matter is created in the heated target region on a picosecond time scale.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnard, J.J., Armijo, J., More, R.M., Friedman, A., Kaganovich, I., Logan, B.G., Marinak, M.M., Penn, G.E., Sefkow, A.B., Santhanam, P., Stoltz, P., Veitzer, S., Wurtele, J.S. (2007). Theory and simulation of warm dense matter targets. Nucl. Instrum. Methods Phys. Res A 577, 275283.CrossRefGoogle Scholar
Boris, J.P., Landsberg, A.M., Oran, E.S. & Gardner, J.H. (1993). LCPFCT–Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations. NRL Memorandom Report 6410, Washington, DC: Naval Research Laboratory, 20375–5320.CrossRefGoogle Scholar
Brambrink, E., Roth, M., Blazevic, A. & Schlegel, T. (2006). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.CrossRefGoogle Scholar
Chen, Z., Cockburn, B., Gardner, C.L. & Jerome, J.W. (1995). Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode. J. Comput. Phys. 117, 274280.CrossRefGoogle Scholar
Deutsch, C. (1986). Inertial confinement fusion driven by intense ion beams. Ann. Phys. (Paris) 11, 1111.Google Scholar
Deutsch, C., Maynard, G., Bimbot, R., Gardes, D., Dellanegra, S., Dumail, M., Kubica, B., Richard, A., River, M.F., Sernagean, A., Fleurier, C., Sanba, A., Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1989). Ion beam-plasma interaction: A standard model approach. Nucl. Instrum. Methods Phys. Res A 278, 3843.CrossRefGoogle Scholar
Deutsch, C. (1992). Ion cluster interaction with cold targets for ICF: Fragmentation and stopping. Laser Part. Beams 10, 217226.CrossRefGoogle Scholar
Haas, F., Manfredi, G. & Feix, M. (2000). Multistream model for quantum plasmas. Phys. Rev. E 62, 2763.CrossRefGoogle ScholarPubMed
Hoffmann, D.H.H. (2008). Intense laser and particle beams interaction physics toward inertial fusion. Laser Part. Beams 26, 295296.Google Scholar
Hoffmann, D.H.H., Fortov, V.E., Kuster, M., Mintsev, V., Sharkov, B.Y., Tahir, N.A., Udrea, S., Varentsov, D. & Weyrich, K. (2009). High energy density physics generated by intense heavy ion beams. Astrophys Space Sci. 322, 167177.CrossRefGoogle Scholar
Hoffmann, D.H.H., Tahir, N.A., Udreal, S., Rosmej, O., Meister, C.V., Varentsov, D., Roth, M., Schaumann, G., Frank, A., Blažević, A., Ling, J., Hug, A., Menzel, J., Hessling, TH., Harres, K., Günther, M., El-Moussatil, S., Schumacher, D. & Imran, M. (2010). High energy density physics with heavy ion beams and related interaction phenomena. Plasma Phys. 50, 715.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Manfredi, G. & Haas, F. (2001). Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64, 075316.CrossRefGoogle Scholar
More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.CrossRefGoogle Scholar
Nellis, W.J. (2006). Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69, 14791580.CrossRefGoogle Scholar
Nettelmann, N., Holst, B., Kietzmann, A., French, M., Redmer, R. & Blaschke, D. (2008). Ab initio equation of state data for hydrogen, helium, and water and the internal structure of jupiter. Astrophys. J. 683, 12171228.CrossRefGoogle Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F. & Ruhl, H. (2003). Isochoric Heating of Solid-Density Matter with an Ultrafast Proton Beam. Phys. Rev. Lett. 91, 125004.CrossRefGoogle ScholarPubMed
Stöckl, C., Frankenheim, O.B., Roth, M., Suß, W., Wetzler, H., Seelig, W., Kulish, M., Dornik, M., Laux, W., Spiller, P., Stetter, M., Stöwe, S., Jacoby, J. & Hoffmann, D.H.H. (1996). Interaction of heavy ion beams with dense plasmas. Laser Part. Beams 14, 561574.CrossRefGoogle Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Matvechev, A., Ostrik, A., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2007). Numerical modeling of heavy ion induced stress waves in solid targets. Laser Part. Beams 25, 523540.CrossRefGoogle Scholar
Tahir, N.A., Schmidt, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Hoffmann, D.H.H., Deutsch, C. & Fortov, V.E. (2009). Large Hadron collider at CERN: Beams generating high-energy-density matter. Phys. Rev. E 79, 046410.CrossRefGoogle ScholarPubMed
Tahir, N.A., Shutov, A., Piriz, A.R., Lomonosov, I.V., Deutsch, C., Spiller, P. & Stöhlker, TH. (2011). Application of intense heavy ion beams to study high energy density physics. Plasma Phys. Control. Fusion 53, 124004.CrossRefGoogle Scholar
Zhang, Y., Song, Y.-H. & Wang, Y.-N. (2011). Stopping power for a charged particle moving through three-dimensional nonideal finite-temperature electron gases. Phys. Plasmas 18, 072701.Google Scholar
Zhang, Y., Song, Y.-H. & Wang, Y.-N. (2011). Nonlinear wake potential and stopping power for charged particles interacting with a one-dimensional electron gas. Phys. Plasmas 18, 112705.Google Scholar
Zhao, Y., X, G., Xu, H., Zhao, H., Xia, J., Jin, G., Ma, X., Liu, Y., Yang, Z., Zhang, P., Wang, Y., Li, D., Zhao, H., Zhan, W., Xu, Z., Zhao, D., Li, F. & Chen, X. (2009). An outlook of heavy ion driven plasma research at IMP-Lanzhou. Nucl. Instrum. Methods Phys. Res B 267, 163166.CrossRefGoogle Scholar
Zhao, X. & Shin, Y.C. (2012). A two-dimensional comprehensive hydrodynamic model for femtosecond laser pulse interaction with metals. J. Phys. D: Appl. Phys. 45, 105201.CrossRefGoogle Scholar