Pt based alloys are one of the most important intermetallic materials with widespread applications. In this article, we have investigated the structural stability, elastic modulus, and electronic structure of Pt3M alloys by applying first-principles density functional theory, where M atom covers alkali metals, alkali earth metals, main group metals, and transition metals. The calculated elastic constants and elastic modulus demonstrated that all Pt3M alloys studied in this article are mechanically stable, possess good stability against shear and behavior in a ductile manner. The equilibrium lattice constant and the binding energy are also calculated to reveal the law with the change of elements. In addition, the LDOS and deformation charge density is presented to reveal the structural stability and the extent of charge transfer between Pt and M atoms. These results help us to better understand the physical properties of Pt3M alloys and also indicate that Pt3M alloys provide an extensive selection of intermetallic materials.