Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T12:06:13.709Z Has data issue: false hasContentIssue false

First-principles study of the structural, elastic and electronic properties of Pt3M alloys

Published online by Cambridge University Press:  19 September 2016

Xuechao Li
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
Xi Chen
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China; and School of Ethnic Minority Education, Beijing University of Posts and Telecommunications, Beijing, China
Lihong Han
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
Chengji Ruan
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
Pengfei Lu*
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
Pengfei Guan*
Affiliation:
Beijing Computational Science Research Center, Beijing 100094, China
*
a) Address all correspondence to these authors. e-mail: photon.bupt@gmail.com
b) e-mail: pguan@csrc.ac.cn
Get access

Abstract

Pt based alloys are one of the most important intermetallic materials with widespread applications. In this article, we have investigated the structural stability, elastic modulus, and electronic structure of Pt3M alloys by applying first-principles density functional theory, where M atom covers alkali metals, alkali earth metals, main group metals, and transition metals. The calculated elastic constants and elastic modulus demonstrated that all Pt3M alloys studied in this article are mechanically stable, possess good stability against shear and behavior in a ductile manner. The equilibrium lattice constant and the binding energy are also calculated to reveal the law with the change of elements. In addition, the LDOS and deformation charge density is presented to reveal the structural stability and the extent of charge transfer between Pt and M atoms. These results help us to better understand the physical properties of Pt3M alloys and also indicate that Pt3M alloys provide an extensive selection of intermetallic materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tian, T., Wang, X.F., and Li, W.: Ab initio calculations on elastic properties in L12 structure Al3X and X3Al-type (X = transition or main group metal) intermetallic compounds. Solid State Commun. 156, 69 (2013).CrossRefGoogle Scholar
Mun, B.S., Watanabe, M., Rossi, M., Stamenkovic, V., Markovic, N.M., and Ross, P.J.: A study of electronic structures of Pt3M (M = Ti, V, Cr, Fe, Co, Ni) polycrystalline alloys with valence-band photoemission spectroscopy. J. Chem. Phys. 123(20), 204717 (2005).Google Scholar
Okuda, M., Eloi, J.C., Jones, S.E., Verwegen, M., Cornelissen, J.J., and Schwarzacher, W.: Pt, Co–Pt and Fe–Pt alloy nanoclusters encapsulated in virus capsids. Nanotechnology 27(9), 95605 (2016).CrossRefGoogle ScholarPubMed
Liu, Z.M., Ma, L.L., Zhang, J., Hongsirikarn, K., and Goodwin, J.G.: Pt alloy electrocatalysts for proton exchange membrane fuel cells: A review. Catal. Rev. 55, 255288 (2013).Google Scholar
Huang, C., Yamabe-Mitarai, Y., and Harada, H.: The stabilization of Pt3Al phase with L12 structure in Pt–Al–Ir–Nb and Pt–Al–Nb alloys. J. Alloys Compd. 366, 217221 (2004).Google Scholar
Medvedev, N.N., Starostenkov, M.D., Zakharov, P.V., and Pozidaeva, O.V.: Localized oscillating modes in two-dimensional model of regulated Pt3Al alloy. Tech. Phys. Lett. 37(2), 98101 (2011).CrossRefGoogle Scholar
Uemura, Y., Inada, Y., Bando, K.K., Sasaki, T., Kamiuchi, N., Eguchi, K., Yagishita, A., Nomura, M., Tadag, M., and Iwasawa, Y.: In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. Phys. Chem. Chem. Phys. 13, 1583315844 (2011).CrossRefGoogle Scholar
Brown, D., Crappery, M.D., Bedwell, K.H., Butterfield, M.T., Guilfoyle, S.J., Malins, A.E.R., and Petty, M.: Experimental determination of the partial density of states for the binary alloys Pt3V and Pt3Mn. J. Phys.: Condens. Matter 9, 94359443 (1997).Google Scholar
Yano, S. and Tsunoda, Y.: Simple cubic antiferromagnet Pt3Fe alloy under uniaxial pressure. J. Magn. Magn. Mater. 310, 18411843 (2007).Google Scholar
Rao, C.V., Reddy, A.L.M., Ishikawa, Y., and Ajayan, P.M.: Synthesis and electrocatalytic oxygen reduction activity of graphene-supported Pt3Co and Pt3Cr alloy nanoparticles. Carbon 49, 931936 (2011).Google Scholar
Koh, S., Toney, M.F., and Strasser, P.: Activity-stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochim. Acta 52, 27652774 (2007).CrossRefGoogle Scholar
Stamenkovic, V., Schmidt, T.J., Ross, P.N., and Markovic, N.M.: Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 1197011979 (2002).CrossRefGoogle Scholar
Shen, T.T., Chen, M., Du, C.Y., Sun, Y.R., Tan, Q., Du, L., Chen, G.Y., and Yin, G.P.: Facile synthesis of Pt3Ni alloy nanourchins by temperature modulation and their enhanced electrocatalytic properties. J. Alloys Compd. 645, 309316 (2015).CrossRefGoogle Scholar
Yoo, S.J., Lee, K.S., Hwang, S.J., Cho, Y.H., Kim, S.K., Yun, J.W., Sung, Y.E., and Lim, T.H.: Pt3Y electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Int. J. Hydrogen Energy 37, 97589765 (2012).CrossRefGoogle Scholar
Liu, Y.J., Huang, H.W., Pan, Y., Zhao, G.H., and Liang, Z.: First-principles study on the phase transition, elastic properties and electronic structure of Pt3Al alloys under high pressure. J. Alloys Compd. 597, 200204 (2014).Google Scholar
Jin, N., Han, J.Y., Wang, H., Zhu, X.L., and Ge, Q.F.: A DFT study of oxygen reduction reaction mechanism over O-doped graphene-supported Pt4, Pt3Fe and Pt3V alloy catalysts. Int. J. Hydrogen Energy 40(15), 51265134 (2015).Google Scholar
Arlkan, N., yigör, A., Candan, A., Özduran, M., Karakoç, A., Uğur, S., Uğur, G., Bouhemadou, A., Bin-Omran, S., and Guechi, N.: Ab-initio study of the structural, electronic, elastic and vibrational properties of the intermetallic Pd3V and Pt3V alloys in the L12 phase. Met. Mater. Int. 20(4), 765773 (2014).Google Scholar
Sha, Y., Yu, T.H., Merinov, B.V., Shirvanian, P., and Goddard, W.A. III: Mechanism for oxygen reduction reaction on Pt3Ni alloy fuel cell cathode. J. Phys. Chem. C 116, 2133421342 (2012).Google Scholar
Pan, Y., Guan, W.M., Wen, M., Zhang, J.M., Wang, C.J., and Tan, Z.L.: Hydrogen embrittlement of Pt3Zr compound from first-principles. J. Alloys Compd. 585, 549554 (2014).CrossRefGoogle Scholar
Xiang, X.D., Sun, X., Briceno, G., Lou, Y., Wang, K-A., Chang, H., Wallace-Freedman, W.G., Chen, S-W., and Schultz, P.G.: A combinatorial approach to materials discovery. Science 268, 1738 (1995).Google Scholar
Koinuma, H. and Takeuchi, I.: Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, 429438 (2004).Google Scholar
Potyrailo, R.A. and Takeuchi, I.: Combinatorial and high-throughput materials Research. Meas. Sci. Technol. 16, 1 (2005).Google Scholar
Chiang, Y-M., Sadoway, D.R., Aydinol, M.K., Jang, Y-I., Huang, B., and Ceder, G.: Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392, 694 (1998).Google Scholar
Stucke, D.P. and Crespi, V.H.: Predictions of new crystalline states for assemblies of nanoparticles: Perovskite analogues and 3-D arrays of self-assembled nanowires. Nano Lett. 3, 1183 (2003).Google Scholar
Morgan, D., Ceder, G., and Curtarolo, S.: High-throughput and data mining with ab initio methods. Meas. Sci. Technol. 16, 296 (2005).Google Scholar
Jain, A., Hautier, G., Moore, C.J., Ong, S.P., Fischer, C.C., Mueller, T., Persson, K.A., and Ceder, G.: A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 22952310 (2011).Google Scholar
Kresse, G. and Furthmueller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter 54, 11169 (1996).CrossRefGoogle ScholarPubMed
Kresse, G. and Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B: Condens. Matter Mater. Phys. 49, 14251 (1994).Google Scholar
Kresse, G. and Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Longo, R.C., Carrete, J., and Gallego, L.J.: Ab initio study of 3d, 4d, and 5d transition metal adatoms and dimers adsorbed on hydrogen-passivated zigzag graphene nanoribbons. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 235415 (2011).CrossRefGoogle Scholar
Jennings, P.C., Aleksandrov, H.A., Neyman, K.M., and Johnston, R.L.: O2 dissociation on M@Pt core–shell particles for 3d, 4d, and 5d transition metals. J. Phys. Chem. C 119(20), 1103111041 (2015).Google Scholar
Liu, Z.T.Y., Zhou, X., Gall, D., and Khare, S.V.: First-principles investigation of the structural, mechanical and electronic properties of the NbO-structured 3d, 4d and 5d transition metal nitrides. Comput. Mater. Sci. 84, 365373 (2014).Google Scholar
Jiang, C.: First-principles study of site occupancy of dilute 3d, 4d and 5d transition metal solutes in L10 TiAl. Acta Mater. 56, 62246231 (2008).CrossRefGoogle Scholar
Bloechl, P.E.: Projector augmented-wave method. Phys. Rev. B: Condens. Matter 50, 17953 (1994).CrossRefGoogle Scholar
Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758 (1999).Google Scholar
Yang, Z.X., Wang, J.L., and Yu, X.H.: The adsorption, diffusion and dissociation of O2 on Pt-skin Pt3Ni(111): A density functional theory study. Chem. Phys. Lett. 499, 8388 (2010).Google Scholar
Branger, V., Pelosin, V., Badawi, K., and Goudeau, P.: Study of the mechanical and microstructural state of platinum thin films. Thin Solid Films 275, 22 (1996).Google Scholar
Ma, Y. and Balbuena, P.B.: Pt surface segregation in bimetallic Pt3M alloys: A density functional theory study. Surf. Sci. 602, 107113 (2008).CrossRefGoogle Scholar
Zhang, Q.A. and Akiba, E.: Phase relations and hydrogenation behavior of Sr(Al1−x Mg x )2 . J. Alloys Compd. 360, 143 (2003).Google Scholar
Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809 (1947).CrossRefGoogle Scholar
Pan, Y., Guo, J.M., Lin, Y.H., Liu, W.Y., Wang, Sh.L., and Deng, K.H.: First-principles investigation on hydrogen doping of PtAl2 alloy. J. Alloys Compd. 621, 201205 (2015).CrossRefGoogle Scholar
Wang, T.F., Chen, P., Deng, Y.H., and Tang, B.Y.: First-principles calculation of structural and elastic properties of Pd3−x Rh x V alloys. Trans. Nonferrous Met. Soc. China 21, 388394 (2011).CrossRefGoogle Scholar
Arıkan, N., İyigör, A., Candan, A., Özduran, M., Karakoç, A., Uģur, Ş., Uģur, G., Bouhemadou, A., Bin-Omran, S., and Guechi, N.: Ab-initio study of the structural, electronic, elastic and vibrational properties of the intermetallic Pd3V and Pt3V alloys in the L12 phase. Met. Mater. Int. 20(4), 765773 (2014).CrossRefGoogle Scholar
Beckstein, O., Klepeis, J.E., Hart, G.L.W., and Pankratov, O.: First-principles elastic constants and electronic structure of α-Pt2Si and PtSi. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 134112 (2001).Google Scholar
Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., Sect. A 65, 349 (1952).Google Scholar
Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).Google Scholar