We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cardiovascular disease is one of the most important problems in long-term follow-up for Noonan syndrome. We examined cardiovascular issues and clinical manifestations, with a focus on the cardiovascular disease and prognosis of patients with Noonan syndrome.
Methods:
This single-centre study evaluated patients who were clinically and genetically diagnosed with Noonan syndrome.
Results:
Forty-three patients diagnosed with Noonan syndrome were analysed. The most prevalent responsible mutation was found in PTPN11 (25/43). The second and third most prevalent causative genes were SOS1 (6/43) and RIT1 (5/43), respectively, and 67.4% of genetically diagnosed patients with Noonan syndrome had structural cardiovascular abnormalities. Pulmonary valve stenosis was prevalent in patients with mutations in PTPN11 (8/25), SOS1 (4/6), and RIT1 (4/5). Hypertrophic cardiomyopathy was found in two of three patients with mutations in RAF1. There was no difference in the cardiovascular events or cardiovascular disease prevalence in patients with or without PTPN11 mutations. The proportion of RIT1 mutation-positive patients who underwent intervention due to cardiovascular disease was significantly higher than that of patients with PTPN11 mutations. Patients who underwent any intervention for pulmonary valve stenosis exhibited significantly higher pulmonary flow velocity than patients who did not undergo intervention, when they visited our hospital for the first time. All patients who underwent intervention for pulmonary valve stenosis had a pulmonary flow velocity of more than 3.0 m/s at first visit.
Conclusions:
These findings suggest that genetic information can provide a clinical prognosis for cardiovascular disease and may be part of genotype-based follow-up in Noonan syndrome.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.