We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study possible Scott sentence complexities of linear orderings using two approaches. First, we investigate the effect of the Friedman–Stanley embedding on Scott sentence complexity and show that it only preserves $\Pi ^{\mathrm {in}}_{\alpha }$ complexities. We then take a more direct approach and exhibit linear orderings of all Scott sentence complexities except $\Sigma ^{\mathrm {in}}_{3}$ and $\Sigma ^{\mathrm {in}}_{\lambda +1}$ for $\lambda $ a limit ordinal. We show that the former cannot be the Scott sentence complexity of a linear ordering. In the process we develop new techniques which appear to be helpful to calculate the Scott sentence complexities of structures.
We calculate the possible Scott ranks of countable models of Peano arithmetic. We show that no non-standard model can have Scott rank less than $\omega $ and that non-standard models of true arithmetic must have Scott rank greater than $\omega $. Other than that there are no restrictions. By giving a reduction via $\Delta ^{\mathrm {in}}_{1}$ bi-interpretability from the class of linear orderings to the canonical structural $\omega $-jump of models of an arbitrary completion T of $\mathrm {PA}$ we show that every countable ordinal $\alpha>\omega $ is realized as the Scott rank of a model of T.
We introduce several highness notions on degrees related to the problem of computing isomorphisms between structures, provided that isomorphisms exist. We consider variants along axes of uniformity, inclusion of negative information, and several other problems related to computing isomorphisms. These other problems include Scott analysis (in the form of back-and-forth relations), jump hierarchies, and computing descending sequences in linear orders.
Every countable structure has a sentence of the infinitary logic
$\mathcal {L}_{\omega _1 \omega }$
which characterizes that structure up to isomorphism among countable structures. Such a sentence is called a Scott sentence, and can be thought of as a description of the structure. The least complexity of a Scott sentence for a structure can be thought of as a measurement of the complexity of describing the structure. We begin with an introduction to the area, with short and simple proofs where possible, followed by a survey of recent advances.
We define the Scott complexity of a countable structure to be the least complexity of a Scott sentence for that structure. This is a finer notion of complexity than Scott rank: it distinguishes between whether the simplest Scott sentence is
$\Sigma _{\alpha }$
,
$\Pi _{\alpha }$
, or
$\mathrm {d-}\Sigma _{\alpha }$
. We give a complete classification of the possible Scott complexities, including an example of a structure whose simplest Scott sentence is
$\Sigma _{\lambda + 1}$
for
$\lambda $
a limit ordinal. This answers a question left open by A. Miller.
We also construct examples of computable structures of high Scott rank with Scott complexities
$\Sigma _{\omega _1^{CK}+1}$
and
$\mathrm {d-}\Sigma _{\omega _1^{CK}+1}$
. There are three other possible Scott complexities for a computable structure of high Scott rank:
$\Pi _{\omega _1^{CK}}$
,
$\Pi _{\omega _1^{CK}+1}$
,
$\Sigma _{\omega _1^{CK}+1}$
. Examples of these were already known. Our examples are computable structures of Scott rank
$\omega _1^{CK}+1$
which, after naming finitely many constants, have Scott rank
$\omega _1^{CK}$
. The existence of such structures was an open question.
We calculate the complexity of Scott sentences of scattered linear orders. Given a countable scattered linear order L of Hausdorff rank
$\alpha $
we show that it has a
${d\text {-}\Sigma _{2\alpha +1}}$
Scott sentence. It follows from results of Ash [2] that for every countable
$\alpha $
there is a linear order whose optimal Scott sentence has this complexity. Therefore, our bounds are tight. We furthermore show that every Hausdorff rank 1 linear order has an optimal
${\Pi ^{\mathrm {c}}_{3}}$
or
${d\text {-}\Sigma ^{\mathrm {c}}_{3}}$
Scott sentence and give a characterization of those linear orders of rank
$1$
with
${\Pi ^{\mathrm {c}}_{3}}$
optimal Scott sentences. At last we show that for all countable
$\alpha $
the class of Hausdorff rank
$\alpha $
linear orders is
$\boldsymbol {\Sigma }_{2\alpha +2}$
complete and obtain analogous results for index sets of computable linear orders.
Let L be a computable vocabulary, let XL be the space of L-structures with universe ω and let $f:{2^\omega } \to {X_L}$ be a hyperarithmetic function such that for all $x,y \in {2^\omega }$, if $x{ \equiv _h}y$ then $f\left( x \right) \cong f\left( y \right)$. One of the following two properties must hold. (1) The Scott rank of f (0) is $\omega _1^{CK} + 1$. (2) For all $x \in {2^\omega },f\left( x \right) \cong f\left( 0 \right)$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.