We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A new derivation considering the non-linear terms has been proposed to calculate stiffness and damping coefficients for short hydrodynamic journal bearings lubricated with pseudo-plastic fluids. The proposed method has relaxed the constraint of small perturbation method applicable to only small values of non-Newtonian factor α. An analytical solution is also given. The non-linear Reynolds equation is solved with a more reasonable boundary condition ∂p*/∂z* = 0 at the location of z*=0 while the analytical pressure distribution is obtained by seven-point Gauss-Legendre integral formula. When the non-dimensional non-Newtonian factor α is small, the stiffness and damping coefficients of computed by the proposed method can agree well with those from small perturbation method, which could verify the proposed derivation. As for large non-dimensional non-Newtonian factor α, the stiffness coefficients
$K_{XX}^*$
,
$K_{XY}^*$
and
$K_{YX}^*$
as well as the damping coefficients
$C_{XX}^*$
,
$C_{XY}^*$
and
$C_{YX}^*$
decrease with the increasing of non-dimensional non-Newtonian factor α. The significance of the derivation is that it can relax the constraint of small α and simplify the computation process.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.