We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study bracket words, which are a far-reaching generalization of Sturmian words, along Hardy field sequences, which are a far-reaching generalization of Piatetski-Shapiro sequences $\lfloor n^c \rfloor $. We show that sequences thus obtained are deterministic (that is, they have subexponential subword complexity) and satisfy Sarnak’s conjecture.
Let $r\geq 2$ and $s\geq 2$ be multiplicatively dependent integers. We establish a lower bound for the sum of the block complexities of the $r$-ary expansion and the $s$-ary expansion of an irrational real number, viewed as infinite words on $\{0,1,\ldots ,r-1\}$ and $\{0,1,\ldots ,s-1\}$, and we show that this bound is best possible.
We prove that every Sturmian word ω has infinitely many prefixes of
the form UnVn3, where |Un| < 2.855|Vn| and
limn→∞|Vn| = ∞. In passing, we give a very simple proof of the
known fact that every Sturmian word begins in arbitrarily long squares.
Episturmian morphisms constitute a powerful tool to study episturmian words. Indeed, any episturmian word can be infinitely decomposed over the set of pure episturmian morphisms. Thus, an episturmian word can be defined by one of its morphic decompositions or, equivalently, by a certain directive word. Here we characterize pairs of words directing the same episturmian word. We also propose a way to uniquely define any episturmian word through a normalization of its directive words. As a consequence of these results, we characterize episturmian words having a unique directive word.
Nous établissons quelques propriétés des mots sturmiens et classifions, ensuite, les mots infinis qui possèdent, pour tout entier naturel non nul n, exactement n+2 facteurs de longueur n. Nous définissons également la notion d'insertion k à k sur les mots infinis puis nous calculons la complexité des mots obtenus en appliquant cette notion aux mots sturmiens. Enfin nous étudions l'équilibre et la palindromie d'une classe particulière de mots de complexité n+2 que nous appelons mots quasi-sturmiens par insertion et que nous caractérisons à l'aide des vecteurs de Parikh.