We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Individuals with single ventricle physiology who are palliated with superior cavopulmonary anastomosis (Glenn surgery) may develop pulmonary arteriovenous malformations. The traditional tools for pulmonary arteriovenous malformation diagnosis are often of limited diagnostic utility in this patient population. We sought to measure the pulmonary capillary transit time to determine its value as a tool to identify pulmonary arteriovenous malformations in patients with single ventricle physiology.
Methods:
We defined the angiographic pulmonary capillary transit time as the number of cardiac cycles required for transit of contrast from the distal pulmonary arteries to the pulmonary veins. Patients were retrospectively recruited from a single quaternary North American paediatric centre, and angiographic and clinical data were reviewed. Pulmonary capillary transit time was calculated in 20 control patients and compared to 20 single ventricle patients at the pre-Glenn, Glenn, and Fontan surgical stages (which were compared with a linear-mixed model). Correlation (Pearson) between pulmonary capillary transit time and haemodynamic and injection parameters was assessed using angiograms from 84 Glenn patients. Five independent observers calculated pulmonary capillary transit time to measure reproducibility (intraclass correlation coefficient).
Results:
Mean pulmonary capillary transit time was 3.3 cardiac cycles in the control population, and 3.5, 2.4, and 3.5 in the pre-Glenn, Glenn, and Fontan stages, respectively. Pulmonary capillary transit time in the Glenn population did not correlate with injection conditions. Intraclass correlation coefficient was 0.87.
Conclusions:
Pulmonary angiography can be used to calculate the pulmonary capillary transit time, which is reproducible between observers. Pulmonary capillary transit time accelerates in the Glenn stage, correlating with absence of direct hepatopulmonary venous flow.
Prolonged pleural effusions are common post Fontan operation and are associated with morbidity. Fontan pleural effusions have elevated proinflammatory cytokines. Little is known about the chest tube drainage after a superior cavopulmonary connection. We examined the chest tube drainage and the inflammatory profiles in post-operative superior cavopulmonary connection patients.
Methods:
This prospective cohort study enrolled 25 patients undergoing superior cavopulmonary connection and 10 age-similar controls. Data are also compared to 25 previously published Fontan patients and their 15 age-similar controls. Chest tube samples were analysed with a 17-cytokine BioPlex Assay. Descriptive statistics and univariate comparisons were made between groups.
Results:
Duration of chest tube drainage was significantly shorter in superior cavopulmonary connection patients (median 4 days, [interquartile range 3–5 days]) versus Fontan patients (10 days, [7–11 days], p < 0.0001). Cytokine concentrations were higher on post-operative day 1 in superior cavopulmonary connection patients versus Fontan patients (all p ≤ 0.01), however levels were comparable to age-similar controls. While proinflammatory IL 8, MIP-1β, and TNF-α concentrations increased in chest tube drainage of Fontan patients from post-operative day 1 to last chest tube day (all p < 0.0001), there was no change in these biomarkers in superior cavopulmonary connection patients, their controls, or Fontan controls.
Conclusions:
Our study demonstrates that after superior cavopulmonary connection, proinflammatory cytokines in the chest tube drainage remain similar to biventricular controls of both age groups, unlike the significant rise over time observed in Fontan patients. Inflammation within the chest tube drainage is likely not innate to single ventricle patients.
This chapter details the perioperative management of an infant with hypoplastic left heart syndrome post stage II palliation who presents for hypospadias repair. The anatomy, physiology, and significance of manipulating pulmonary vascular resistance and systemic vascular resistance on systemic oxygen delivery are highlighted. In addition, intraoperative airway management, anesthetic and analgesic plans, as well as pharmacological agents are detailed. Considerations for suitability for outpatient surgery are mentioned. Finally, a summary of intraoperative goals pertinent to this congenital heart defect are listed.
Patients with univentricular heart disease may undergo a superior cavopulmonary anastomosis, an operative intervention that raises cerebral venous pressure and impedance to cerebral venous return. The ability of infantile cerebral autoregulation to compensate for this is not well understood.
Materials and methods:
We identified all patients undergoing a superior cavopulmonary anastomosis (cases) and compared metrics of cerebral oxygenation upon admission to the ICU with patients following repair of tetralogy of Fallot or arterial switch operation (controls). The primary endpoint was cerebral venous oxyhaemoglobin saturation measured from an internal jugular venous catheter. Other predictor variables included case–control assignment, age, weight, sex, ischemic times, arterial oxyhaemoglobin saturation, mean arterial blood pressure, and superior caval pressure.
Results:
A total of 151 cases and 350 controls were identified. The first post-operative cerebral venous oxyhaemoglobin saturation was significantly lower following superior cavopulmonary anastomosis than in controls (44 ± 12 versus 59 ± 15%, p < 0.001), as was arterial oxyhaemoglobin saturation (81 ± 9 versus 98 ± 5%, p < 0.001). Cerebral venous oxyhaemoglobin saturation correlated poorly with superior caval pressure in both groups. When estimated by linear mixed effects model, arterial oxyhaemoglobin saturation was the primary determinant of central venous oxyhaemoglobin saturation in both groups (β = 0.79, p = 3 × 10−14); for every 1% point increase in arterial oxyhaemoglobin saturation, there was a 0.79% point increase in venous oxyhaemoglobin saturation. In this model, no other predictors were significant, including superior caval pressure and case–control assignment.
Conclusion:
Cerebral autoregulation appears to remain intact despite acute imposition of cerebral venous hypertension following superior cavopulmonary anastomosis. Following superior cavopulmonary anastomosis, cerebral venous oxyhaemoglobin saturation is primarily determined by arterial oxyhaemoglobin saturation.
This chapter, reviews the basics of non-cardiac surgery for the child with a superior cavopulmonary anastomosis (Glenn physiology). The authors provide an overview of Glenn physiology and the indications for construction of a superior cavopulmonary anastomosis. The chapter considers the “normal” values for this cohort as well as the anesthetic interactions and implication of the Glenn physiology for a host of anesthetic management techniques.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.