In a feeding trial with sheep, four animals each were fed one of the three roughages (perennial ryegrass (PR), meadow fescue (MF) and red clover (RC)) or one of the four different mixtures (g/day 250 : 250 : 250, 375 : 75 : 300, 525 : 187.5 : 37.5 and 75 : 525 : 150, respectively) of those three roughages, both with and without the inclusion of 100 g of beeswax-labelled barley. Further, four sheep received a pure lucerne diet to enlarge available data on single species faecal recoveries. All sheep except those fed single-component diets and the 250 : 250 : 250 roughage mix were administered intra-ruminal alkane controlled-release devices (CRD). The aim of the study was to investigate the effect of diet composition on faecal alkane recoveries, and to assess the accuracy of the alkane-based estimate of diet composition and intake based either upon a general set of faecal recoveries across diets or upon dietary recoveries and dietary samples more specifically attributable to individual dietary treatments. For each roughage component independently, the accuracy of diet composition estimates was assessed using linear regression across all diets. The estimates of the proportion of barley were analysed further using mean differences and mean prediction errors. Faecal alkane recovery increased with increasing chain length and was affected by diet composition. RC had a significantly higher faecal recovery for alkanes C25, C27, C29 and C31 than at least one of the other single-roughage diets. When considering mixed diets consisting of PR, MF, RC and barley, the composition of the roughage component significantly affected faecal recovery of all alkanes except C30 and C33. The inclusion of beeswax-labelled barley caused a decrease in faecal recovery of alkanes up to C29. This effect was attributable to the beeswax rather than the barley itself. By contrast, the decrease of faecal recovery of synthetic dosed alkanes from the CRD in diets containing barley, compared with the corresponding diets without barley, was attributable to the supplement itself. It was concluded that synthetic dosed alkanes behaved differently during gut transit from natural alkanes. The proportions of individual dietary components were estimated well over a wide range of proportions. Generally, the more information available, the more accurate the estimates achieved. However, a general set of faecal alkane recoveries and bulked samples of dietary components yielded estimates of diet composition sufficiently accurate for a large number of studies, especially in situations where groups of animals are of concern and not the individual animal.