We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Effects of external static magnetic field (applied in $\hat y$-direction) on resonant excitation of surface plasma waves (SPW) have been investigated over the metal free space interface. The high power laser $({\rm \omega} _0,\;\vec k_{0z})$ is incident over the metal surface and exerts a ponderomotive force on the metal electrons in the skin layer. The ponderomotive force disturbs the quasi-neutrality of plasma which results into the excitation of space charge field at the frequency 2ω0. The electron density perturbation at frequency 2ω0 driven by self-consistent space charge potential couples with the oscillatory velocity due to the seed SPW $({\rm \omega}, \;\vec k_z)$ and produces nonlinear current to drive another counter propagating SPW $({\rm \omega} _1,\;\vec k_{1z})$ at the phase matching conditions of frequency ω = ω1 − 2ω0 and wavenumber $\vec k_z = \vec k_{1z} - 2\vec k{}_{0z}$ (by feedback mechanism). The parametric process becomes resonant at 2ω0 ≈ ωp and the maximum growth rate is achieved for an incidence angle of laser θ = 40°. The growth rate of the process reduces to half on increasing the magnetic field from 0.49 to 2.45 MG. The present study may be significant to the laser absorption experiments where surface rippling can strongly affect the laser energy absorption.
The acceleration of an electron beam by surface plasma waves (SPW), in the presence of external magnetic field parallel to surface and perpendicular to direction of propagation of SPW has been studied. This wave propagating along the $\hat z$-axis is excited using Kretschmann geometry, having maximum amplitude at the metal–vacuum interface. Equations of motion have been solved for electron energy and trajectory. The electron gains and retains energy in the form of cyclotron oscillations due to the combined effect of the static magnetic field and SPW field. The energy gained by the beam increases with the strength of magnetic field and laser intensity. In the present scheme, electron beams can achieve ~15 KeV energy for the SPW amplitude A1 = 1.6 × 1011 V/m, plasma frequency ωp = 1.3 × 1016 rad/s and cyclotron frequency ωc/ωp = 0.003.
An obliquely incident high-power laser (ω0, k0z) on the metallic surface can resonantly excite a surface plasma wave (SPW) (ω1, k1z) and a quasi-electrostatic plasma wave (ω, kz) inside the skin layer at the phase-matching conditions of frequency ω1 = ω − ω0 and wave number k1z = kz − k0z. The oscillating electrons in the skin layer couples with the seed SPW and exert non-linear ponderomotive force on electrons at the frequency of quasi-static mode. Density perturbations due to quasi-static mode and ponderomotive force associate with the motion of electrons (due to incident laser) and give rise to a non-linear current by feedback mechanism. At ω/kz ~ vF (where vF is the Fermi velocity of metal) this non-linear current is responsible for the growth of SPW. The maximum growth of the present process (≅1.5 × 1012 s−1) is achieved at incident angle θ = 42° for laser frequency ω0 = 2 × 1015 rad/s. Growth of SPW enhances from 1.62 × 1011 to ≅1.5 × 1012 s−1 as the magnetic field changes from 12 to 24 MG. The excited SPW can be utilized for surface heating and diagnostics purpose.
A high-frequency surface plasma wave (SPW) excited over metallic surface irradiated by a laser beam, can undergo stimulated Compton scattering if phase velocity of daughter plasma wave is equal to the Fermi velocity for metal. The pump SPW ${\rm (}{{\rm \omega} _0},{\vec k_{0{\rm z}}})$ parametrically excites a quasi-electrostatic plasma wave ${\rm (\omega}, {\vec k_{\rm z}})$ and a backscattered sideband SPW ${\rm (}{{\rm \omega} _1},{\vec k_{1{\rm z}}})$ at resonance ω0 = ω − ω1 and ${\vec k_{0{\rm z}}} = {\vec k_{\rm z}} - {\vec k_{1{\rm z}}}$. The growth rate of Compton process increases with the frequency of incident laser and turns out to be 5.425 × 1010 rad/s at laser frequency ω0 = 0.7595 × 1015 rad/s for incident laser amplitude A0L = 11 × 1011 V/m, laser spot size b = 1.38 × 10−5 m, and free electron density of metal n0 = 5.85 × 1028/m3. The excitation of highly damped quasi-electrostatic plasma wave in this parametric process provide a better nonlinear option for surface heating as compared with direct laser heating. The process can also be used for diagnostics purposes.
Electron acceleration is studied during the resonant interaction of launched electron beam with the surface plasma wave (SPW) in the presence of static magnetic field. A configuration of two parallel metal sheets separated by a vacuum region supports the SPW of amplitude maximum on the two parallel interfaces and minimum in the middle. Kretschmann geometry is used to excite surface plasma mode by shinning laser on a glass prism. Dispersion relation of SPW is established in the presence of magnetic field and smaller cut-off frequencies are observed as compared with that of without magnetic field. An electron beam launched in the middle region, experiences a longitudinal ponderomotive force due to SPWs and gets accelerated to the velocity of the order of phase velocity of the surface wave. The energy gained by electron is higher in the presence of magnetic field as compared with zero magnetic field. The electron energy and trajectory are also presented for varying parameters such as amplitude of SPW and magnetic field strength. In the present scheme, electron beams can achieve maximum 550 KeV energy for the SPW amplitude ESP = 1.2 × 1011 V/m, plasma frequency ωp = 1.3 × 1016 rad/s, and cyclotron frequency ωc/ωp = 0.05.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.