We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter focus on describing the science and technology related to the use of UNCD films for fabricating MEMS and NEMS structures suitable for use in various devices for medical applications. Topics discussed include: 1) description of the materials science involved in the integration of UNCD films with dissimilar materials in film form, such as piezoelectric oxides, for development of piezo-actuated UNCD-based MEMS/NEMS, and integration with metal films for contacts, and biological matter (e.g., heart cells) for cell bit-induced mechanical deformation of piezo/UNCD cantilevers to generate power via the converse piezoelectric effect, whereby mechanical deformationof cantilevers is transduced into power generation, via mechanical displacement in opposite directions of + and - ions in the piezoelectric layer, thus voltage generation between two electrode layers sandwiching the piezoelectric layer for a new generation of biomedicalenergy generation devices and biosensors). Piezoelectric/UNCD integrated films-based MEMS/NEMS power generation device can power a new generation of defibrillator/pacemaker, eliminating relatively short live batteries in current devices.
This chapter focus on describing the science and technology related to the use of UNCD films for fabricating microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) structures suitable for use in various devices for medical applications. Topics discussed include: 1) Design and fabrication of UNCD-based micro-turbines for chemical lab on a chip, 2) description of the materials science involved in the integration of UNCD films with dissimilar materials in film form, such as piezoelectric nitrides for development of piezo-actuated UNCD-based MEMS/NEMS, and integration with metal films for contacts, and biological matter (e.g., heart cells) for cell bit-induced mechanical deformation of piezo/UNCD cantilevers to generate power via the converse piezoelectric effect, whereby mechanical deformationof cantilevers is transduced into power generation, via mechanical displacement in opposite directions of + and - ions in the piezoelectric layer, thus voltage generation between two electrode layers sandwiching the piezoelectric layer for a new generation of biomedicalenergy generation devices and biosensors.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.