Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T10:59:22.443Z Has data issue: false hasContentIssue false

9 - Science and Technology of Integrated Multifunctional Piezoelectric Oxides/Ultrananocrystalline Diamond (UNCD™) Films for a New Generation of Biomedical MEMS Energy Generation, Drug Delivery, and Sensor Devices

Published online by Cambridge University Press:  08 July 2022

Orlando Auciello
Affiliation:
University of Texas, Dallas
Get access

Summary

This chapter focus on describing the science and technology related to the use of UNCD films for fabricating MEMS and NEMS structures suitable for use in various devices for medical applications. Topics discussed include: 1) description of the materials science involved in the integration of UNCD films with dissimilar materials in film form, such as piezoelectric oxides, for development of piezo-actuated UNCD-based MEMS/NEMS, and integration with metal films for contacts, and biological matter (e.g., heart cells) for cell bit-induced mechanical deformation of piezo/UNCD cantilevers to generate power via the converse piezoelectric effect, whereby mechanical deformationof cantilevers is transduced into power generation, via mechanical displacement in opposite directions of + and - ions in the piezoelectric layer, thus voltage generation between two electrode layers sandwiching the piezoelectric layer for a new generation of biomedicalenergy generation devices and biosensors). Piezoelectric/UNCD integrated films-based MEMS/NEMS power generation device can power a new generation of defibrillator/pacemaker, eliminating relatively short live batteries in current devices.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lakin, K. M. and Wang, J. S., “Acoustic bulk wave composite resonators,” Appl. Phys. Lett., vol. 38, p. 125, 1981.CrossRefGoogle Scholar
Lakin, K., “A review of thin-film resonator technology,” IEEE Microwave Mag. vol. 4 (4), p. 61, 2003.CrossRefGoogle Scholar
Matsushima, T., Yamauchi, N., Shirai, T., et al., “High performance 4 GHz FBAR prepared by Pb (Mn, Nb) O3-Pb (Zr,Ti) O3 sputtered thin film,” in IEEE International Frequency Control Symposium, p. 248, 2010.Google Scholar
Paz de Araujo, C. A., Auciello, O., and Ramesh, R. (Eds), Science and Technology of Integrated Ferroelectrics: Past Eleven Years of the International Symposium on Integrated Ferroelectrics Proceedings. London: Gordon and Breach Publishers, 2000.Google Scholar
Auciello, O., Foster, C. M., and Ramesh, R., “Processing technological for frroelectric thin films and heterostructures,” Ann. Rev. Mater. Sci., vol. 28, p. 501, 1998.Google Scholar
Gruverman, A., Auciello, O., and Tokumoto, H., “Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy,” in Ann. Rev. Mater. Sci., vol. 28, p. 101, 1998.Google Scholar
Auciello, O., Dat, R., and Ramesh, R., “Pulsed laser ablation-deposition and characterization of ferroelectric thin films and heterostructures,” in Ferroelectric Thin Films: Synthesis and Basic Properties, Paz de Araujo, C. A., Scott, J. F., and Taylor, G. W., Eds. London: Gordon and Breach Publishers, 1996, p. 525.Google Scholar
Park, M., Hao, Z., Gyu Kim, G., et al., “A 10 GHz single-crystalline scandium-doped aluminum nitride lamb-wave resonator,” in 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, Transducers & Eurosensors XXXIII, p. 450, 2019.CrossRefGoogle Scholar
Knapp, M., Hoffmann, R., Lebedev, V., Cimalla, V., and Ambacher, O., “Graphene as an active virtually massless top electrode for RF solidly mounted bulk acoustic wave (SMR-BAW) resonators,” Nanotechnology, vol. 29 (10), p. 10, 2018.CrossRefGoogle ScholarPubMed
Sliker, T. R. and Roberts, D. A., “A thin-film CdS-quartz composite resonator,” J. Apply. Phys., vol. 38 (5), p. 2350, 1967.CrossRefGoogle Scholar
Voiculescu, I. and Nordin, A. N., “Acoustic wave-based MEMS devices for biosensing applications (review),” Biosens. Bioelectron., vol. 33 (1), p. 1, 2012.CrossRefGoogle Scholar
Tiurdogan, E., Erdem-Alaca, I., and Hakan, U., “MEMS biosensor for detection of Hepatitis A and C viruses in serum,” Biosens. Bioelectron., vol. 28 (1), p. 189, 2011CrossRefGoogle Scholar
Schroeppel, E. and Lin, J., “Reliability and clinical assessment of pacemaker power sources,” in Handbook of Solid-State Batteries & Capacitors, 2nd ed., Munshi, M.Z.A., Ed. London: World Scientific Publishing, 1999.Google Scholar
Roberts, P., Stanley, G., and Morgan, J. M., “Abstract 2165: Harvesting the energy of cardiac motion to power a pacemaker,” Circulation, vol. 118, p. S679, 2008.CrossRefGoogle Scholar
Leonov, V., Fiorini, P., Sedky, S., Torfs, T., and van Hoof, C., “Thermoelectric MEMS generators as a power supply for a body area network,” in Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, p. 291, 2005.Google Scholar
Kerzenmacher, S., Ducree, J., Zengerle, R., and von Stetten, F., “Energy harvesting by implantable abiotically catalyzed glucose fuel cells,” J. Power Source, vol. 182, p. 1, 2008.CrossRefGoogle Scholar
Lo, H. W., Tai, Y.-C., and Parylene, H. T., “Based electret rotor generator,” in Proceedings of IEEE 21st International Conference on Micro Electro-Mechanical-Systems, p. 984, 2008.Google Scholar
Paracha, A. M., Basset, P., Galayko, D., Marty, F., and Bourouina, T. A., “Silicon MEMS DC/DC converter for autonomous vibration-to-electrical-energy scavenger,” IEEE Electron. Dev. Lett., vol. 30, p. 481, 2009.CrossRefGoogle Scholar
Lu, F., Lee, H. P., and Lim, S. P., “Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications,” Smart Mater. Struct., vol. 13, p. 57, 2004.CrossRefGoogle Scholar
Dufay, T., Guiffard, B., Thomas, J.-C., and Seveno, R., “Transverse piezoelectric coefficient measurement of flexible lead zirconate titanate thin films,” J. Appl. Phys., vol. 117 (20), p. 204101, 2015.CrossRefGoogle Scholar
Ishisaka, T., Sato, H., Akiyama, Y., Furukawa, Y., and Morishima, K.. “Bio-actuated power generator using heart muscle cells on a PDMS membrane,” in Proceedings of International Solid-State Sensors, Actuators and Microsystems Conference, p. 903, 2007.Google Scholar
Gao, P. X., Song, J., Liu, J., and Wang, Z. L.. “Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices,” Adv. Mater., vol. 19, p. 67, 2007.Google Scholar
Xu, S., Qin, Y, Xu, C., et al., “Self-powered nanowire devices,” Nat. Nano., vol. 5, p. 366, 2010.Google Scholar
Li, Z., Zhu, G.., Yang, R., Wang, A. C., and Wang, Z. L., “Muscle-driven in vivo nanogenerator,” Adv. Mater., vol. 22, p. 2534, 2010.Google Scholar
Auciello, O. and Sumant, A. V., “Status review of the science and technology of ultrananocrystalline diamond (UNCDTM) films and application to multifunctional devices,” Diam. Relat. Mater., vol. 19, p. 699, 2010.CrossRefGoogle Scholar
Gruen, D. M., Krauss, A. R., Auciello, O., and Carlisle, J. A., “N-type doping of NCD films with nitrogen and electrodes made therefrom,” US patent #6,793,849 B1, 2004.Google Scholar
Getty, S. A., Auciello, O., Sumant, A. V., et al., “Characterization of nitrogen-incorporated ultrananocrystalline diamond as a robust cold cathode material,” in Micro-and Nanotechnology Sensors, Systems, and Applications-II, George, T., Islam, S., and Dutta, A., Eds. Bellingham, WA: SPIE, p. 76791N-1, 2010.Google Scholar
Adiga, V. P., Sumant, A. V., Suresh, S., et al., “Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators,” Phys. Rev. B, vol. 79, p. 245403, 2009.CrossRefGoogle Scholar
Sumant, A. V., Auciello, O., Yuan, H.-C., et al., “Large area low temperature ultrananocrystalline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMS/NEMS-CMOS systems,” Proc. SPIE vol. 7318, p. 7318171-7, 2009.Google Scholar
Butler, J. E. and Windischmann, H., “Developments in CVD-diamond synthesis during the past decade,” MRS Bull., vol. 23 (9), p. 22, 1998.CrossRefGoogle Scholar
Sumant, A. V., Auciello, O., Carpick, R. W., Srinivasan, S., and Butler, J. E., “Ultrananocrystalline and nanocrystalline diamond thin films for MEMS/NEMS applications,” MRS Bull., vol. 35, p. 1, 2010.CrossRefGoogle Scholar
Konicek, A. R., Grierson, D. S., Gilbert, P. U. P. A., et al., “Origin of ultralow friction and wear in ultrananocrystalline diamond,” Phys. Rev. Lett., vol. 100, p. 235502/1-4, 2008.Google Scholar
Auciello, O., Birrell, J., Carlisle, J. A., et al., “Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films,” J. Phys. Condens. Matter, vol. 16 (16), p. R539, 2004.Google Scholar
Sumant, A. V., Grierson, D. S., Gerbi, J. E., et al., “Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond,” Adv. Mater., vol. 17, p, 1039, 2005.CrossRefGoogle Scholar
Xiao, X., Wang, J., Carlisle, J. A., et al. “In Vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips,” J. Biomed. Mater., vol. 77B (2), p. 273, 2006.Google Scholar
Krauss, A. R., Auciello, O., Gruen, D. M., et al., “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices,” Diam. Relat. Mater., vol. 10, p. 1952, 2001.Google Scholar
Auciello, O., Gurman, P., Guglielmotti, M. B., et al., “Biocompatible ultrananocrystalline diamond coatings for implantable medical devices,” MRS Bull., vol. 39 (7), p. 621, 2014.Google Scholar
Srinivasan, S., Hiller, J., Kabius, B., and Auciello, O., “Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems,” Appl. Phys. Lett., vol. 90, p. 134101, 2007.Google Scholar
Gerbi, J. E., Auciello, O., Birrell, J., Gruen, D. M., Carlisle, J. A., Alphenaar, B. W., “Electrical Contacts to Ultrananocrystalline Diamond,” Appl. Phys. Lett., vol. 83 (10), p. 2001, 2003.Google Scholar
Klug, J. A., Holt, M. V., Nath Premnath, R., et al. “Elastic relaxation and correlation of local strain gradients with ferroelectric domains in (001) BiFeO3 nanostructures,” Appl. Phys. Lett., vol 98, p. 052902, 2011.CrossRefGoogle Scholar
Lee, G., Fuentes-Fernandez, E. M. A., Lian, G., Katiyar, R. S., and Auciello, O., “Hetero-epitaxial BiFeO3/SrTiO3 nanolaminates with higher piezoresponse performance over stoichiometric BiFeO3 films,Appl. Phys. Lett., vol. 106, p. 022905, 2015.CrossRefGoogle Scholar
Liu, Z., Liu, Q., Liu, H., and Yao, K., “Electrical properties of undoped PZT and Co-doped PCZT films deposited on ITO/glass substrates by a sol–gel method,” Phys. Stat. Sol. (a), vol. 202 (9), p. 1834, 2005.Google Scholar
Auciello, O., “Science and technology of thin films and interfacial layers in ferroelectric and high-dielectric constant heterostructures and application to devices,” J. Appl. Phys., vol. 100, p. 051614, 2006.CrossRefGoogle Scholar
Paz de Araujo, C. A., Auciello, O., and Ramesh, R., “Science and technology of ferroelectric films and heterostructures for non-volatile ferroelectric memories: past eleven years and the future,” in Science and Technology of Integrated Ferroelectrics: Past Eleven Years of the International Symposium on Integrated Ferroelectrics Proceedings. London: Gordon and Breach Publishers, vol. 11, p. xvii–lxxxi, 2000.Google Scholar
Auciello, O., Foster, C. M., and Ramesh, R., “Processing technological for ferroelectric thin films and heterostructures,” Ann. Rev. Mater. Sci., vol. 28, p. 501, 1998.Google Scholar
Thomas, R., Mochizuki, S., Mihara, T., and Ishid, T., “Preparation of Pb(Zr,Ti)O thin films by RF-magnetron sputtering with single stoichiometric target: structural and electrical properties,” Thin Solid Films, vol. 413, p. 65, 2002 .CrossRefGoogle Scholar
Wang, Z., Kokawa, H., and Maeda, R., Epitaxial PZT films Deposited by Pulsed Laser Deposition for MEMS Applications. Stresa: TIMA Editions, p. ISBN: 2-916187-03, 2006.Google Scholar
Auciello, O., Dat, R., and Ramesh, R.Pulsed laser ablation-deposition and characterization of ferroelectric thin films and heterostructures,” in Ferroelectric Thin Films: Synthesis and Basic Properties, Paz de Araujo, C. A., Scott, J. F., and Taylor, G. W., Eds. London: Gordon and Breach Publishers, p. 525, 1996.Google Scholar
Auciello, O., “Pulsed laser ablation-deposition of multicomponent oxide thin films: basic laser ablation and deposition processes and influence on film characteristics,” in Handbook of Crystal Growth, Hurle, D. T. J., Ed. Amsterdam: Elsevier vol. 3, p. 365, 1995.Google Scholar
Chrisey, D. B. and Hubler, G. K. (Eds), Pulsed Laser Deposition of Thin Films. New York: Wiley-Interscience, 1994.Google Scholar
Zhao, J. S., Park, D.-Y., Seo, M. J., et al., “Metallorganic CVD of high-quality PZT thin films at low temperature with New Zr and Ti precursors having MMP ligands,” J. Electrochem. Soc., vol. 151 (5), p. C283, 2004.Google Scholar
Shi, B., Jin, Q., Chen, L., et al., “Cell growth on different types of ultrananocrystalline diamond thin films,J. Funct. Biomater., vol. 3 (3), p. 588, 2012.CrossRefGoogle ScholarPubMed
Shi, B., Jin, Q., Chen, L., and Auciello, O., “Fundamentals of ultrananocrystalline diamond (UNCD) thin films as biomaterials for developmental biology: embryonic fibroblasts growth on the surface of (UNCD) films,Diam. Relat. Mater., vol. 18 (2), p. 596, 2008.Google Scholar
Bajaj, P., Akin, D., Gupta, A., et al., “Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications,” Biomed. Microdevices, vol. 9 (6), p. 787, 2007.Google Scholar
Yang, W., Auciello, O., Butler, J. E., et al., “Preparation and electrochemical characterization of DNA-modified nanocrystalline diamond films,” Mater. Res. Soc., vol. 737, p. F4.4, 2002.Google Scholar
Lee, G., Fuentes-Fernandez, E. M. A., Lian, G., Katiyar, R. S., and Auciello, O., “Heteroepitaxial BiFeO3/SrTiO3 nanolaminates with higher piezoresponse performance over stoichiometric BiFeO3 films,” Appl. Phys. Lett., vol. 106, p. 022905, 2015.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×