We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with ventricular assist devices (VADs) represent a growing population presenting to Emergency Medical Services (EMS), but little is known about their prehospital care. This study aimed to characterize current EMS protocols in the United States for patients with VADs.
Methods:
States with state-wide EMS protocols were included. Protocols were obtained from the state EMS website. If not available, the office of the state medical director was contacted. For each state, protocols were analyzed for patient and VAD assessment and treatment variables.
Results:
Of 32 states with state-wide EMS protocols, 21 had VAD-specific protocols. With 17 (81%) states noting a pulse may not be palpable, protocols recommended assessing alternate measures of perfusion and mean arterial pressure (MAP; 15 [71%]). Assessment of VAD was advised through listening for pump hum (20 [95%]) and alarms (20 [95%]) and checking the power supply (15 [71%]). For treatment, EMS prehospital consultation was required to begin chest compression in three (14%) states, and mechanical (device) chest compressions were not permitted in two (10%) states. Contact information for VAD coordinator was listed in a minority of five (24%) states. Transport of VAD equipment/backup bag was advised in 18 (86%) states.
Discussion:
This national analysis of EMS protocols found VAD-specific EMS protocols are not universally adopted in the United States and are variable when implemented, highlighting a need for VAD teams to partner with EMS agencies to inform standardized protocols that optimize these patients’ care.
Chest radiography compares left ventricular decompression in the same patient supported with extracorporeal membrane oxygenation with atrial septal fenestration and subsequently supported with left ventricular assist device with apical cannulation.
This chapter provides an excellent and in-depth discussion on the complexities associated with caring for children with ventricular assist device support. The author provides a thorough analysis of the available support devices in children based on the patients’ indication for support. perioperative management algorithms for patients supported by the continuous flow devices and Berlin devices are suggested. The perioperative approach for these patients is reviewed in detail with respect to VAD/anesthesia interaction.
We reviewed all patients who were supported with extracorporeal membrane oxygenation and/or ventricular assist device at our institution in order to describe diagnostic characteristics and assess mortality.
Methods
A retrospective cohort study was performed including all patients supported with extracorporeal membrane oxygenation and/or ventricular assist device from our first case (8 October, 1998) through 25 July, 2016. The primary outcome of interest was mortality, which was modelled by the Kaplan–Meier method.
Results
A total of 223 patients underwent 241 extracorporeal membrane oxygenation runs. Median support time was 4.0 days, ranging from 0.04 to 55.8 days, with a mean of 6.4±7.0 days. Mean (±SD) age at initiation was 727.4 days (±146.9 days). Indications for extracorporeal membrane oxygenation were stratified by primary indication: cardiac extracorporeal membrane oxygenation (n=175; 72.6%) or respiratory extracorporeal membrane oxygenation (n=66; 27.4%). The most frequent diagnosis for cardiac extracorporeal membrane oxygenation patients was hypoplastic left heart syndrome or hypoplastic left heart syndrome-related malformation (n=55 patients with HLHS who underwent 64 extracorporeal membrane oxygenation runs). For respiratory extracorporeal membrane oxygenation, the most frequent diagnosis was congenital diaphragmatic hernia (n=22). A total of 24 patients underwent 26 ventricular assist device runs. Median support time was 7 days, ranging from 0 to 75 days, with a mean of 15.3±18.8 days. Mean age at initiation of ventricular assist device was 2530.8±660.2 days (6.93±1.81 years). Cardiomyopathy/myocarditis was the most frequent indication for ventricular assist device placement (n=14; 53.8%). Survival to discharge was 42.2% for extracorporeal membrane oxygenation patients and 54.2% for ventricular assist device patients. Kaplan–Meier 1-year survival was as follows: all patients, 41.0%; extracorporeal membrane oxygenation patients, 41.0%; and ventricular assist device patients, 43.2%. Kaplan–Meier 5-year survival was as follows: all patients, 39.7%; extracorporeal membrane oxygenation patients, 39.7%; and ventricular assist device patients, 43.2%.
Conclusions
This single-institutional 18-year review documents the differential probability of survival for various sub-groups of patients who require support with extracorporeal membrane oxygenation or ventricular assist device. The indication for mechanical circulatory support, underlying diagnosis, age, and setting in which cannulation occurs may affect survival after extracorporeal membrane oxygenation and ventricular assist device. The Kaplan–Meier analyses in this study demonstrate that patients who survive to hospital discharge have an excellent chance of longer-term survival.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.