We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The search for relevant biomarkers of major depressive disorder (MDD) is challenged by heterogeneity; biological alterations may vary in patients expressing different symptom profiles. Moreover, most research considers a limited number of biomarkers, which may not be adequate for tagging complex network-level mechanisms. Here we studied clusters of proteins and examined their relation with MDD and individual depressive symptoms.
Methods
The sample consisted of 1621 subjects from the Netherlands Study of Depression and Anxiety (NESDA). MDD diagnoses were based on DSM-IV criteria and the Inventory of Depressive Symptomatology questionnaire measured endorsement of 30 symptoms. Serum protein levels were detected using a multi-analyte platform (171 analytes, immunoassay, Myriad RBM DiscoveryMAP 250+). Proteomic clusters were computed using weighted correlation network analysis (WGCNA).
Results
Six proteomic clusters were identified, of which one was nominally significantly associated with current MDD (p = 9.62E-03, Bonferroni adj. p = 0.057). This cluster contained 21 analytes and was enriched with pathways involved in inflammation and metabolism [including C-reactive protein (CRP), leptin and insulin]. At the individual symptom level, this proteomic cluster was associated with ten symptoms, among which were five atypical, energy-related symptoms. After correcting for several health and lifestyle covariates, hypersomnia, increased appetite, panic and weight gain remained significantly associated with the cluster.
Conclusions
Our findings support the idea that alterations in a network of proteins involved in inflammatory and metabolic processes are present in MDD, but these alterations map predominantly to clinical symptoms reflecting an imbalance between energy intake and expenditure.
Tetralogy of Fallot is a common CHD. Studies have shown a close link between heart failure and myocardial fibrosis. Interleukin-6 has been suggested to be a post-independent factor of heart failure. This study aimed to explore the relationship between IL-6 and myocardial fibrosis during cardiopulmonary bypass.
Material and Methods:
We downloaded the expression profile dataset GSE132176 from Gene Expression Omnibus. After normalising the raw data, Gene Set Enrichment Analysis and differential gene expression analysis were performed using R. Further, a weighted gene correlation network analysis and a protein–protein interaction network analysis were used to identify HUB genes. Finally, we downloaded single-cell expression data for HUB genes using PanglaoDB.
Results:
There were 119 differentially expressed genes in right atrium tissues comparing the post-CPB group with the pre-CPB group. IL-6 was found to be significantly up-regulated in the post-CPB group. Six genes (JUN, FOS, ATF3, EGR1, IL-6, and PTGS2) were identified as HUB genes by a weighted gene correlation network analysis and a protein–protein interaction network analysis. Gene Set Enrichment Analysis showed that IL-6 affects the myocardium during CPB mainly through the JAK/STAT signalling pathway. Finally, we used PanglaoDB data to analyse the single-cell expression of the HUB genes.
Conclusion:
Our findings suggest that high expression of IL-6 and the activation of the JAK/STAT signalling pathway during CPB maybe the potential mechanism of myocardial fibrosis. We speculate that the high expression of IL-6 might be an important factor leading to heart failure after ToF surgery. We expect that these findings will provide a basis for the development of targeted drugs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.