We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we formulate and present ample evidence towards the conjecture that the partition function (i.e. the exponential of the generating series of intersection numbers with monomials in psi classes) of the Pixton class on the moduli space of stable curves is the topological tau function of the noncommutative Korteweg-de Vries hierarchy, which we introduced in a previous work. The specialisation of this conjecture to the top degree part of Pixton’s class states that the partition function of the double ramification cycle is the tau function of the dispersionless limit of this hierarchy. In fact, we prove that this conjecture follows from the double ramification/Dubrovin–Zhang equivalence conjecture. We also provide several independent computational checks in support of it.
Chapter 5 is devoted to giving a detailed proof of Faltings’s theorem (Theorem 5.1), asserting that "any algebraic curve of genus at least two over a number field has only finitely many rational points." We begin by recalling the proof of Liouville’s inequality in classical Diophantine approximation, and compare it with the proof of Faltings’s theorem, that is, Bombieri's version of Vojta's proof. We then explain how to reduce Faltings’s theorem to Vojta’s inequality (Theorem 5.2) and to Theorems 5.4, 5.5, and 5.6, which respectively assert the existence of sections of Vojta divisors having small heights, an upper bound for the indices of the small sections, and a lower bound for the indices of the small sections. We give proofs of Theorems 5.4, 5.5, and 5.6, which completes the proof of Faltings’s theorem. Finally, we give an easy application of Faltings’s theorem to Fermat curves.
We consider the natural $A_{\infty }$-structure on the $\mathrm{Ext}$-algebra $\mathrm{Ext}^*(G,G)$ associated with the coherent sheaf $G=\mathcal{O}_C\oplus \mathcal{O}_{p_1}\oplus \cdots \oplus \mathcal{O}_{p_n}$ on a smooth projective curve $C$, where $p_1,\ldots,p_n\in C$ are distinct points. We study the homotopy class of the product $m_3$. Assuming that $h^0(p_1+\cdots +p_n)=1$, we prove that $m_3$ is homotopic to zero if and only if $C$ is hyperelliptic and the points $p_i$ are Weierstrass points. In the latter case we show that $m_4$ is not homotopic to zero, provided the genus of $C$ is greater than $1$. In the case $n=g$ we prove that the $A_{\infty }$-structure is determined uniquely (up to homotopy) by the products $m_i$ with $i\le 6$. Also, in this case we study the rational map $\mathcal{M}_{g,g}\to \mathbb{A}^{g^2-2g}$ associated with the homotopy class of $m_3$. We prove that for $g\ge 6$ it is birational onto its image, while for $g\le 5$ it is dominant. We also give an interpretation of this map in terms of tangents to $C$ in the canonical embedding and in the projective embedding given by the linear series $|2(p_1+\cdots +p_g)|$.
Let X be a smooth, proper and geometrically irreducible curve X defined over a number field F and let χ be a regular and proper model of X over OF,Sl. In this paper we address the problem of detecting the linear dependence over ℤl of elements in the étale K-theory of χ. To be more specific, let P ∊ Ket2n(χ) and let ⋀̂ ⊂ Ket2n(χ) be a ℤl-submodule. Let rυ: Ket2n(χ) → Ket2n(χυ) be the reduction map for υ ∉ Sl. We prove, under some conditions on X, that if rυ() ∈ rυ (⋀̂) for almost all υ of then ∈ ⋀̂ + Ket2n(χ)tor.
We describe a probability distribution on isomorphism classes of principally quasi-polarized $p$-divisible groups over a finite field $k$ of characteristic $p$ which can reasonably be thought of as a ‘uniform distribution’, and we compute the distribution of various statistics ($p$-corank, $a$-number, etc.) of $p$-divisible groups drawn from this distribution. It is then natural to ask to what extent the $p$-divisible groups attached to a randomly chosen hyperelliptic curve (respectively, curve; respectively, abelian variety) over $k$ are uniformly distributed in this sense. This heuristic is analogous to conjectures of Cohen–Lenstra type for $\text{char~} k\not = p$, in which case the random $p$-divisible group is defined by a random matrix recording the action of Frobenius. Extensive numerical investigation reveals some cases of agreement with the heuristic and some interesting discrepancies. For example, plane curves over ${\mathbf{F} }_{3} $ appear substantially less likely to be ordinary than hyperelliptic curves over ${\mathbf{F} }_{3} $.
A harmonic morphism defined on $\mathbb{R}^3$ with values in a Riemann surface is characterized in terms of a complex analytic curve in the complex surface of straight lines. We show how, to a certain family of complex curves, the singular set of the corresponding harmonic morphism has an isolated component consisting of a continuously embedded knot.
We construct a finite-dimensional vector space of functions of two complex variables attached to a smooth algebraic curve C over a finite field $\mathbb{F}_q$, q odd, and a level. These functions collect the analytic information about the cohomology of the curve and its quadratic twists that is encoded in the corresponding L-functions; they are double Dirichlet series in two independent complex variables s and w. We prove that these series satisfy a finite, non-abelian group of functional equations in the two complex variables (s, w) and are rational functions in q-s and q-w with a specified denominator. The group is D6, the dihedral group of order 12.
Let A be the local ring at a singular point p of an algebraic reduced curve. Let M (resp. Ml,..., Mh) be the maximal ideal of A (resp. of Ā). In this paper we want to classify ordinary singularities p with reduced tangent cone: Spec(G(A)). We prove that G(A) is reduced if and only if: p is an ordinary singularity, and the vector spaces span the vector space . If the points of the projectivized tangent cone Proj(G(A)) are in generic position then p is an ordinary singularity if and only if G(A) is reduced. We give an example which shows that the preceding equivalence is not true in general.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.