We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $X$ be a smooth complex projective manifold of dimension $n$ equipped with an ample line bundle $L$ and a rank $k$ holomorphic vector bundle $E$. We assume that $1\leqslant k\leqslant n$, that $X$, $E$ and $L$ are defined over the reals and denote by $\mathbb{R}X$ the real locus of $X$. Then, we estimate from above and below the expected Betti numbers of the vanishing loci in $\mathbb{R}X$ of holomorphic real sections of $E\otimes L^{d}$, where $d$ is a large enough integer. Moreover, given any closed connected codimension $k$ submanifold ${\it\Sigma}$ of $\mathbb{R}^{n}$ with trivial normal bundle, we prove that a real section of $E\otimes L^{d}$ has a positive probability, independent of $d$, of containing around $\sqrt{d}^{n}$ connected components diffeomorphic to ${\it\Sigma}$ in its vanishing locus.
We associate to a test configuration for a polarized variety a filtration of the section ring of the line bundle. Using the recent work of Boucksom and Chen we get a concave function on the Okounkov body whose law with respect to Lebesgue measure determines the asymptotic distribution of the weights of the test configuration. We show that this is a generalization of a well-known result in toric geometry. As an application, we prove that the pushforward of the Lebesgue measure on the Okounkov body is equal to a Duistermaat–Heckman measure of a certain deformation of the manifold. Via the Duisteraat–Heckman formula, we get as a corollary that in the special case of an effective ℂ×-action on the manifold lifting to the line bundle, the pushforward of the Lebesgue measure on the Okounkov body is piecewise polynomial.
Let S be a smooth surface contained as an ample divisor in a smooth complex projective threefold X, which is a P1 -bundle, and assume that induces OP1 (1) on the fibres of X. The following fact is proven. The restriction to S of the bundle projection of X is exactly the reduction morphism of the pair provided that this one is not a conic bundle. The proof is very simple and does not involve any consideration on the nefness of the adjoint bundle Some applications of the proof are given.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.