We say that a function $h\,:\,\mathbb{R}\,\to \,\mathbb{R}$ is a Hamel function $(h\,\in \,\text{HF)}$ if $h$, considered as a subset of
${{\mathbb{R}}^{2}},$ is a Hamel basis for
${{\mathbb{R}}^{2}}.$ We show that $\text{A}\left( \text{HF} \right)\,\ge \,\omega$, i.e., for every finite
$F\,\subseteq \,{{\mathbb{R}}^{\mathbb{R}}}$
there exists
$f\,\in \,{{\mathbb{R}}^{\mathbb{R}}}$
such that $f\,+\,F\,\subseteq \,\text{HF}$. From the previous work of the author it then follows that $\text{A}\left( \text{HF} \right)\,=\,\omega$.