With fossil-fuel consumption at an all-time high, air pollution is becoming one of the most prominent problems of the 21st century. In addition to their devastating effects on the environment, sulfur-based pollutants are problematic for infrastructure by undermining the structural stability of various oxide-based surfaces found in clays and clay minerals. Calcite (CaCO3) and alumina (α-Al2O3) are two such mineral oxides with surfaces that are potentially susceptible to damage by sulfur-based adsorbates. Their surface interactions with a wide range of sulfur-based pollutants, however, have yet to be studied adequately at the atomistic level. This problem can be addressed by utilizing density functional theory (DFT) to provide molecular-level insights into the adsorption effects of H2S, SO2, SO3, H2SO3, and H2SO4 molecules on calcite and alumina surfaces. DFT can be used to compare different types of adsorption events and their corresponding changes in the geometry and coordination of the adsorbates, as well as delineate any possible mineral-surface reconstructions. The hypothesis driving this comparative study was that the mineral-oxide surface structure will dictate the surface adsorption reactivity, i.e. the flat carbonate unit in calcite will behave differently from the Al–O octahedra in alumina under both vacuum and hydrated surface conditions. The set of sulfur-based adsorbates tested here exhibited a wide range of interactions with alumina and fewer with calcite surfaces. Events such as hydrogen bonding, sulfate formation, atom abstraction, and the formation of surface water groups were more prevalent in alumina than calcite and were found to be dependent on the surface termination. The results of this work will prove instrumental in the design of clay and mineral-based materials resilient to sulfur-based pollutants for use in construction and infrastructure such as smart building coatings and antifouling desalination membranes, as DFT methods can garner the atomistic insights into mineral-surface reactivity necessary to unlock these transformative technologies.